Multiscale dynamics of colloidal deposition and erosion in porous media
- PMID: 33188022
- PMCID: PMC7673751
- DOI: 10.1126/sciadv.abc2530
Multiscale dynamics of colloidal deposition and erosion in porous media
Abstract
Diverse processes-e.g., environmental pollution, groundwater remediation, oil recovery, filtration, and drug delivery-involve the transport of colloidal particles in porous media. Using confocal microscopy, we directly visualize this process in situ and thereby identify the fundamental mechanisms by which particles are distributed throughout a medium. At high injection pressures, hydrodynamic stresses cause particles to be continually deposited on and eroded from the solid matrix-notably, forcing them to be distributed throughout the entire medium. By contrast, at low injection pressures, the relative influence of erosion is suppressed, causing particles to localize near the inlet of the medium. Unexpectedly, these macroscopic distribution behaviors depend on imposed pressure in similar ways for particles of different charges, although the pore-scale distribution of deposition is sensitive to particle charge. These results reveal how the multiscale interactions between fluid, particles, and the solid matrix control how colloids are distributed in a porous medium.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures






Similar articles
-
Transport of Colloidal Particles in Microscopic Porous Medium Analogues with Surface Charge Heterogeneity: Experiments and the Fundamental Role of Single-Bead Deposition.Environ Sci Technol. 2020 Nov 3;54(21):13651-13660. doi: 10.1021/acs.est.0c03225. Epub 2020 Oct 20. Environ Sci Technol. 2020. PMID: 33079526
-
Inhibited nanobubble transport in a saturated porous medium: Effects of deposited colloidal particles.J Contam Hydrol. 2021 Oct;242:103854. doi: 10.1016/j.jconhyd.2021.103854. Epub 2021 Jun 29. J Contam Hydrol. 2021. PMID: 34293646
-
Morphology of Shear-Induced Colloidal Aggregates in Porous Media: Consequences for Transport, Deposition, and Re-entrainment.Environ Sci Technol. 2020 May 5;54(9):5813-5821. doi: 10.1021/acs.est.9b05744. Epub 2020 Apr 1. Environ Sci Technol. 2020. PMID: 32182046
-
Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.Adv Colloid Interface Sci. 2006 Feb 28;119(2-3):71-96. doi: 10.1016/j.cis.2005.09.001. Epub 2005 Dec 1. Adv Colloid Interface Sci. 2006. PMID: 16324681 Review.
-
Colloidal surface interactions and membrane fouling: investigations at pore scale.Adv Colloid Interface Sci. 2011 May 11;164(1-2):2-11. doi: 10.1016/j.cis.2010.10.005. Epub 2010 Oct 26. Adv Colloid Interface Sci. 2011. PMID: 21130419 Review.
Cited by
-
Effect of Flow Velocity on Clogging Induced by Coal Fines in Saturated Proppant Packs: A Transition from Surface Deposition to Bridging.ACS Omega. 2024 Jul 15;9(29):32066-32079. doi: 10.1021/acsomega.4c04121. eCollection 2024 Jul 23. ACS Omega. 2024. PMID: 39072057 Free PMC article.
-
4D microvelocimetry reveals multiphase flow field perturbations in porous media.Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2316723121. doi: 10.1073/pnas.2316723121. Epub 2024 Mar 13. Proc Natl Acad Sci U S A. 2024. PMID: 38478686 Free PMC article.
-
Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape.Nat Commun. 2023 Oct 13;14(1):6448. doi: 10.1038/s41467-023-41989-x. Nat Commun. 2023. PMID: 37833258 Free PMC article.
-
Significant Mobility of Novel Heteroaggregates of Montmorillonite Microparticles with Nanoscale Zerovalent Irons in Saturated Porous Media.Toxics. 2022 Jun 17;10(6):332. doi: 10.3390/toxics10060332. Toxics. 2022. PMID: 35736940 Free PMC article.
-
Effects of Weathering on Microplastic Dispersibility and Pollutant Uptake Capacity.ACS Environ Au. 2022 Nov 16;2(6):549-555. doi: 10.1021/acsenvironau.2c00036. Epub 2022 Aug 31. ACS Environ Au. 2022. PMID: 36411868 Free PMC article.
References
-
- Phenrat T., Kim H.-J., Fagerlund F., Illangasekare T., Tilton R. D., Lowry G. V., Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ. Sci. Technol. 43, 5079–5085 (2009). - PubMed
-
- Zhao X., Liu W., Cai Z., Han B., Qian T., Zhao D., An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266 (2016). - PubMed
-
- Kanel S. R., Grenèche J.-M., Choi H., Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40, 2045–2050 (2006). - PubMed
-
- Zhang H., Nikolov A., Wasan D., Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy Fuel 28, 3002–3009 (2014).
-
- Tang R., Kim C. S., Solfiell D. J., Rana S., Mout R., Velázquez-Delgado E. M., Chompoosor A., Jeong Y., Yan B., Zhu Z.-J., Kim C., Hardy J. A., Rotello V. M., Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. ACS Nano 7, 6667–6673 (2013). - PMC - PubMed
LinkOut - more resources
Full Text Sources