Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Feb:269:120467.
doi: 10.1016/j.biomaterials.2020.120467. Epub 2020 Nov 6.

Extracellular vesicles: A bright star of nanomedicine

Affiliations
Review

Extracellular vesicles: A bright star of nanomedicine

Peipei Wu et al. Biomaterials. 2021 Feb.

Abstract

Extracellular vesicles (EVs) have unique structural, compositional, and morphological characteristics as well as predominant physiochemical stability and biocompatibility properties. They play a crucial role in pathophysiological regulation, and also have broad prospects for clinical application in the diagnosis, prognosis, and therapy of disease, and tissue regeneration and repair. Herein, the biosynthesis and physiological functions and current methods for separation and identification of EVs are summarized. Specifically, engineered EVs may be used to enhance targeted therapy in cancer and repair damaged tissues, and they may be developed as an individualized imaging diagnostic reagent, among other potential applications. We will focus on reviewing recent studies on engineered EVs in which alterations enhanced their therapeutic capability or diagnostic imaging potential via physical, chemical, and biological modification approaches. This review will clarify the superior biological functions and powerful therapeutic potential of EVs, particularly with regard to new designs based on EVs and their utilization in a new generation of nanomedicine diagnosis and treatment platforms.

Keywords: Cancer therapy; Drug delivery; Engineering extracellular vesicles; Functionalization strategy; Gene therapy; Tissue regeneration repair.

PubMed Disclaimer

Publication types