Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct 27:11:562264.
doi: 10.3389/fimmu.2020.562264. eCollection 2020.

A 21st Century Evil: Immunopathology and New Therapies of COVID-19

Affiliations
Review

A 21st Century Evil: Immunopathology and New Therapies of COVID-19

Taylon Felipe Silva et al. Front Immunol. .

Abstract

Coronavirus Disease 2019 (COVID-19) has been classified as a global threat, affecting millions of people and killing thousands. It is caused by the SARS-CoV-2 virus, which emerged at the end of 2019 in Wuhan, China, quickly spreading worldwide. COVID-19 is a disease with symptoms that range from fever and breathing difficulty to acute respiratory distress and death, critically affecting older patients and people with previous comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor and mainly spreads through the respiratory tract, which it then uses to reach several organs. The immune system of infected patients has been demonstrated to suffer important alterations, such as lymphopenia, exhausted lymphocytes, excessive amounts of inflammatory monocytes and macrophages, especially in the lungs, and cytokine storms, which may contribute to its severity and difficulty of establishing an effective treatment. Even though no specific treatment is currently available, several studies have been investigating potential therapeutic strategies, including the use of previously approved drugs and immunotherapy. In this context, this review addresses the interaction between SARS-CoV-2 and the patient's host immune system during infection, in addition to discussing the main immunopathological mechanisms involved in the development of the disease and potential new therapeutic approaches.

Keywords: Coronavirus Disease 2019; Severe Acute Respiratory Syndrome Coronavirus 2; cellular exhaustion; coronavirus; cytokine storm; immunopathology; treatment.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Genetic evolution of SARS-CoV-2 and its consequences. Compared with other β-CoVs, SARS-CoV-2 has similarities of 50, 79, and 88 - 96% to MERS-CoV, SARS-CoV-1, and bat SARS-like-CoV genome, respectively, with 91% similarity with SARS-like CoV found in pangolins. The virus resulted from mutations that caused changes in important proteins for its virulence; notably, the spike, matrix, envelope, and nucleocapsid proteins caused alterations in host cell interactions, which culminated in a new aggressive disease (COVID-19). RBD (receptor binding domain), S1 (subunit 1) S2 (subunit 2).
Figure 2
Figure 2
Immune response in COVID-19 stages. SARS-CoV-2 infection is divided into three general phases. In the first one, called viremia, the virus spreads through the body and there is excessive activation of immune cells with exacerbated production of inflammatory mediators, such as IFN-γ, IL-2, and TNF-α, triggering cytokine storms and immune impairment. The second (acute) phase, characterized by the appearance of COVID-19 symptoms, presents a profile of immune cells still hyperactivated, but with the presence of cell exhaustion markers, such as Tim3, PD1, TIGIT, and NKG2A, in addition to losing the functional capacity of producign IFN, IL-2, and TNF-α. In this period there is still the appearance of CD14+ CD16+ hyperinflammatory monocytes, with a high production capacity of TNF-α, IL-1β, and IL-6, which will migrate to the lungs, contributing to the pathogenesis of respiratory failure and maintaining the cytokine storm. The lethargic state of the immune system in the early stages of infection may be related to the delay in the generation of a humoral response. In the third, or convalescence, phase, the individual can evolve in two opposite directions, recovery or clinical worsening/death. In recovery, cells of lymphoid origin recover their effector function and lose markers of exhaustion, while IgG levels improve. On the other hand, in patients with clinical worsening, this status of immune anergy continues.

References

    1. World Health Organization WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard (2020). Available at: https://covid19.who.int/ (Accessed September 14, 2020).
    1. Park M, Cook AR, Lim JT, Sun Y, Dickens BL. A Systematic Review of COVID-19 Epidemiology Based on Current Evidence. J Clin Med (2020) 9:967. 10.3390/jcm9040967 - DOI - PMC - PubMed
    1. Wu Y, Ho W, Huang Y, Jin DY, Li S, Liu SL, et al. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet (2020) 395:949–50. 10.1016/S0140-6736(20)30557-2 - DOI - PMC - PubMed
    1. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med (2020) 26:450–2. 10.1038/s41591-020-0820-9 - DOI - PMC - PubMed
    1. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA J Am Med Assoc (2020) 323:1239–42. 10.1001/jama.2020.2648 - DOI - PubMed

Substances