More meteorological events that drive compound coastal flooding are projected under climate change
- PMID: 33196054
- PMCID: PMC7661409
- DOI: 10.1038/s43247-020-00044-z
More meteorological events that drive compound coastal flooding are projected under climate change
Abstract
Compound flooding arises from storms causing concurrent extreme meteorological tides (that is the superposition of storm surge and waves) and precipitation. This flooding can severely affect densely populated low-lying coastal areas. Here, combining output from climate and ocean models, we analyse the concurrence probability of the meteorological conditions driving compound flooding. We show that, under a high emissions scenario, the concurrence probability would increase globally by more than 25% by 2100 compared to present. In latitudes above 40o north, compound flooding could become more than 2.5 times as frequent, in contrast to parts of the subtropics where it would weaken. Changes in extreme precipitation and meteorological tides account for most (77% and 20%, respectively) of the projected change in concurrence probability. The evolution of the dependence between precipitation and meteorological tide dominates the uncertainty in the projections. Our results indicate that not accounting for these effects in adaptation planning could leave coastal communities insufficiently protected against flooding.
Keywords: Atmospheric science; Hydrology; Natural hazards; Physical oceanography; Projection and prediction.
© The Author(s) 2020.
Conflict of interest statement
Competing interestsThe authors declare no competing interests.
Figures
References
-
- Bouwer LM, Jonkman SN. Global mortality from storm surges is decreasing. Environ. Res. Lett. 2018;13:014008. doi: 10.1088/1748-9326/aa98a3. - DOI
-
- Winsemius HC, et al. Global drivers of future river flood risk. Nat. Clim. Change. 2016;6:381–385. doi: 10.1038/nclimate2893. - DOI
-
- Pfahl S, O’Gorman P, Fischer E. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change. 2017;7:423–427. doi: 10.1038/nclimate3287. - DOI
LinkOut - more resources
Full Text Sources