Defining new chemical space for drug penetration into Gram-negative bacteria
- PMID: 33199906
- PMCID: PMC7897441
- DOI: 10.1038/s41589-020-00674-6
Defining new chemical space for drug penetration into Gram-negative bacteria
Abstract
We live in the era of antibiotic resistance, and this problem will progressively worsen if no new solutions emerge. In particular, Gram-negative pathogens present both biological and chemical challenges that hinder the discovery of new antibacterial drugs. First, these bacteria are protected from a variety of structurally diverse drugs by a low-permeability barrier composed of two membranes with distinct permeability properties, in addition to active drug efflux, making this cell envelope impermeable to most compounds. Second, chemical libraries currently used in drug discovery contain few compounds that can penetrate Gram-negative bacteria. As a result of these challenges, intensive screening campaigns have led to few successes, highlighting the need for new approaches to identify regions of chemical space that are specifically relevant to antibacterial drug discovery. Herein we provide an overview of emerging insights into this problem and outline a general approach to addressing it using prospective analysis of chemical libraries for the ability of compounds to accumulate in Gram-negative bacteria. The overall goal is to develop robust cheminformatic tools to predict Gram-negative permeation and efflux, which can then be used to guide medicinal chemistry campaigns and the design of antibacterial discovery libraries.
Figures
References
-
- Centers for Disease Control and Prevention, “Antibiotic Resistance Threats in the United States, 2019. ” https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-re....
-
- World Health Organization, “Antimicrobial Resistance: Global Report on Surveillance 2014. ” http://www.who.int/drugresistance/documents/surveillancereport/en/.
-
- The Pew Charitable Trusts, “A Scientific Roadmap for Antibiotic Discovery.” 2016; https://www.pewtrusts.org/en/research-and-analysis/reports/2016/05/a-sci....
-
- Rice LB Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis 197, 1079–1081 (2008). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
