Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2020 Nov 12:2020.11.09.20228411.
doi: 10.1101/2020.11.09.20228411.

Quantitative measurement of IgG to SARS-CoV-2 proteins using ImmunoCAP

Quantitative measurement of IgG to SARS-CoV-2 proteins using ImmunoCAP

Behnam Keshavarz et al. medRxiv. .

Update in

Abstract

Background: Detailed understanding of the immune response to SARS-CoV-2, the cause of coronavirus disease 2019 (COVID-19), has been hampered by a lack of quantitative antibody assays.

Objective: To develop a quantitative assay for IgG to SARS-CoV-2 proteins that could readily be implemented in clinical and research laboratories.

Methods: The biotin-streptavidin technique was used to conjugate SARS-CoV-2 spike receptor-binding-domain (RBD) or nucleocapsid protein to the solid-phase of the ImmunoCAP resin. Plasma and serum samples from patients with COVID-19 (n=51) and samples from donors banked prior to the emergence of COVID-19 (n=109) were used in the assay. SARS-CoV-2 IgG levels were followed longitudinally in a subset of samples and were related to total IgG and IgG to reference antigens using an ImmunoCAP 250 platform.

Results: Performance characteristics demonstrated 100% sensitivity and 99% specificity at a cut-off level of 2.5 µg/mL for both SARS-CoV-2 proteins. Among 36 patients evaluated in a post-hospital follow-up clinic, median levels of IgG to spike-RBD and nucleocapsid were 34.7 µg/mL (IQR 18-52) and 24.5 µg/mL (IQR 9-59), respectively. Among 17 patients with longitudinal samples there was a wide variation in the magnitude of IgG responses, but generally the response to spike-RBD and to nucleocapsid occurred in parallel, with peak levels approaching 100 µg/mL, or 1% of total IgG.

Conclusions: We have described a quantitative assay to measure IgG to SARS-CoV-2 that could be used in clinical and research laboratories and implemented at scale. The assay can easily be adapted to measure IgG to novel antigens, has good performance characteristics and a read-out in standardized units.

PubMed Disclaimer

Publication types

LinkOut - more resources