Targeting tumor-associated macrophages: A potential treatment for solid tumors
- PMID: 33200401
- DOI: 10.1002/jcp.30139
Targeting tumor-associated macrophages: A potential treatment for solid tumors
Abstract
Tumor-associated macrophages (TAMs) in solid tumors exert protumor activities by releasing cytokines or growth factors into the tumor microenvironment. Increasing studies have also shown that TAMs play a key role in tumor progression, such as tumor angiogenesis, immunosuppression, cell proliferation, migration, invasion, and metastasis. A large body of evidence shows that the abundance of TAMs in solid tumors is correlated with poor disease prognosis and resistance to therapies. Therefore, targeting TAMs in solid tumors is considered to be a promising immunotherapeutic strategy. At present, the therapeutic strategies of targeting macrophages mainly include limiting monocyte recruitment, depletion strategies, promoting macrophage phagocytic activity, and induction of macrophage reprogramming. Additionally, targeting TAMs in combination with conventional therapies has been demonstrated to be a promising therapeutic strategy in solid tumors. In the present review, we summarized various TAMs-targeting therapeutic strategies for treating solid tumors. This review also discusses the challenges for targeting TAMs as tumor treatments, the obstacles in clinical trials, and the perspective for the future development of TAMs-targeting therapies for various cancers.
Keywords: solid tumors; targeted therapy; tumor microenvironment; tumor-associated macrophages.
© 2020 Wiley Periodicals LLC.
Similar articles
-
Prognostic significance and targeting tumor-associated macrophages in cancer: new insights and future perspectives.Breast Cancer. 2021 May;28(3):539-555. doi: 10.1007/s12282-021-01231-2. Epub 2021 Mar 4. Breast Cancer. 2021. PMID: 33661479 Review.
-
Tumor-associated macrophages: an accomplice in solid tumor progression.J Biomed Sci. 2019 Oct 20;26(1):78. doi: 10.1186/s12929-019-0568-z. J Biomed Sci. 2019. PMID: 31629410 Free PMC article. Review.
-
Targeting tumor‑associated macrophages: Critical players in tumor progression and therapeutic strategies (Review).Int J Oncol. 2024 Jun;64(6):60. doi: 10.3892/ijo.2024.5648. Epub 2024 May 2. Int J Oncol. 2024. PMID: 38695252 Free PMC article. Review.
-
Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire.Cell Biol Int. 2024 Oct;48(10):1406-1449. doi: 10.1002/cbin.12226. Epub 2024 Jul 25. Cell Biol Int. 2024. PMID: 39054741 Review.
-
Targeting tumor-associated macrophages as an antitumor strategy.Biochem Pharmacol. 2021 Jan;183:114354. doi: 10.1016/j.bcp.2020.114354. Epub 2020 Dec 3. Biochem Pharmacol. 2021. PMID: 33279498 Review.
Cited by
-
Targeting tumor-associated macrophages for cancer treatment.Cell Biosci. 2022 Jun 7;12(1):85. doi: 10.1186/s13578-022-00823-5. Cell Biosci. 2022. PMID: 35672862 Free PMC article. Review.
-
The Combination of CD300c Antibody with PD-1 Blockade Suppresses Tumor Growth and Metastasis by Remodeling the Tumor Microenvironment in Triple-Negative Breast Cancer.Int J Mol Sci. 2025 May 23;26(11):5045. doi: 10.3390/ijms26115045. Int J Mol Sci. 2025. PMID: 40507854 Free PMC article.
-
Regulation and Function of Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): The Role of the SRIF System in Macrophage Regulation.Int J Mol Sci. 2025 Jun 1;26(11):5336. doi: 10.3390/ijms26115336. Int J Mol Sci. 2025. PMID: 40508145 Free PMC article. Review.
-
Tumor-associated macrophage polarization in the inflammatory tumor microenvironment.Front Oncol. 2023 Feb 2;13:1103149. doi: 10.3389/fonc.2023.1103149. eCollection 2023. Front Oncol. 2023. PMID: 36816959 Free PMC article. Review.
-
Pexidartinib synergize PD-1 antibody through inhibiting treg infiltration by reducing TAM-derived CCL22 in lung adenocarcinoma.Front Pharmacol. 2023 Mar 8;14:1092767. doi: 10.3389/fphar.2023.1092767. eCollection 2023. Front Pharmacol. 2023. PMID: 36969873 Free PMC article.
References
REFERENCES
-
- Advani, R., Flinn, I., Popplewell, L., Forero, A., Bartlett, N. L., Ghosh, N., Kline, J., Roschewski, M., LaCasce, A., Collins, G. P., Tran, T., Lynn, J., Chen, J. Y., Volkmer, J. P., Agoram, B., Huang, J., Majeti, R., Weissman, I. L., Takimoto, C. H., … Smith, S. M. (2018). CD47 blockade by Hu5F9-G4 and Rituximab in non-Hodgkin's lymphoma. New England Journal of Medicine, 379(18), 1711-1721. https://doi.org/10.1056/NEJMoa1807315
-
- Alishekevitz, D., Gingis-Velitski, S., Kaidar-Person, O., Gutter-Kapon, L., Scherer, S. D., Raviv, Z., Merquiol, E., Ben-Nun, Y., Miller, V., Rachman-Tzemah, C., Timaner, M., Mumblat, Y., Ilan, N., Loven, D., Hershkovitz, D., Satchi-Fainaro, R., Blum, G., Sleeman, J. P., Vlodavsky, I., & Shaked, Y. (2016). Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Reports, 17(5), 1344-1356. https://doi.org/10.1016/j.celrep.2016.09.083
-
- Allavena, P., Signorelli, M., Chieppa, M., Erba, E., Bianchi, G., Marchesi, F., Olimpio, C. O., Bonardi, C., Garbi, A., Lissoni, A., de Braud, F., Jimeno, J., & D'Incalci, M. (2005). Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): Inhibition of macrophage differentiation and cytokine production. Cancer Research, 65(7), 2964-2971. https://doi.org/10.1158/0008-5472.Can-04-4037
-
- Anderson, C. F., & Mosser, D. M. (2002). A novel phenotype for an activated macrophage: The type 2 activated macrophage. Journal of Leukocyte Biology, 72(1), 101-106.
-
- Arranz, A., Doxaki, C., Vergadi, E., Martinez de la Torre, Y., Vaporidi, K., Lagoudaki, E. D., Ieronymaki, E., Androulidaki, A., Venihaki, M., Margioris, A. N., Stathopoulos, E. N., Tsichlis, P. N., & Tsatsanis, C. (2012). Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9517-9522. https://doi.org/10.1073/pnas.1119038109
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical