Relating latent class membership to external variables: An overview
- PMID: 33200411
- PMCID: PMC8247311
- DOI: 10.1111/bmsp.12227
Relating latent class membership to external variables: An overview
Abstract
In this article we provide an overview of existing approaches for relating latent class membership to external variables of interest. We extend on the work of Nylund-Gibson et al. (Structural Equation Modeling: A Multidisciplinary Journal, 2019, 26, 967), who summarize models with distal outcomes by providing an overview of most recommended modeling options for models with covariates and larger models with multiple latent variables as well. We exemplify the modeling approaches using data from the General Social Survey for a model with a distal outcome where underlying model assumptions are violated, and a model with multiple latent variables. We discuss software availability and provide example syntax for the real data examples in Latent GOLD.
Keywords: covariates; distal outcome; latent class analysis; three-step estimation; two-step estimation.
© 2020 The British Psychological Society.
Conflict of interest statement
All authors declare no conflict of interest.
Figures





Similar articles
-
Accounting for Latent Covariates in Average Effects from Count Regressions.Multivariate Behav Res. 2021 Jul-Aug;56(4):579-594. doi: 10.1080/00273171.2020.1751027. Epub 2020 Apr 24. Multivariate Behav Res. 2021. PMID: 32329366
-
Examination of nonlinear longitudinal processes with latent variables, latent processes, latent changes, and latent classes in the structural equation modeling framework: The R package nlpsem.Behav Res Methods. 2025 Feb 3;57(3):87. doi: 10.3758/s13428-025-02596-4. Behav Res Methods. 2025. PMID: 39900783
-
Comparing the Performance of Improved Classify-Analyze Approaches For Distal Outcomes in Latent Profile Analysis.Methodology (Gott). 2016 Oct;12(4):107-116. doi: 10.1027/1614-2241/a000114. Epub 2016 Dec 5. Methodology (Gott). 2016. PMID: 28630602 Free PMC article.
-
Practitioner's Guide to Latent Class Analysis: Methodological Considerations and Common Pitfalls.Crit Care Med. 2021 Jan 1;49(1):e63-e79. doi: 10.1097/CCM.0000000000004710. Crit Care Med. 2021. PMID: 33165028 Free PMC article. Review.
-
An overview of mixture modelling for latent evolutions in longitudinal data: Modelling approaches, fit statistics and software.Adv Life Course Res. 2020 Mar;43:100323. doi: 10.1016/j.alcr.2019.100323. Epub 2020 Jan 25. Adv Life Course Res. 2020. PMID: 36726256 Review.
Cited by
-
Co-development of attention deficit hyperactivity disorder and autistic trait trajectories from childhood to early adulthood.J Child Psychol Psychiatry. 2023 Nov;64(11):1596-1607. doi: 10.1111/jcpp.13851. Epub 2023 Jun 22. J Child Psychol Psychiatry. 2023. PMID: 37350028 Free PMC article.
-
Who Finds Pornography Stressful? A Latent Profile Analysis.Arch Sex Behav. 2024 Oct;53(9):3393-3404. doi: 10.1007/s10508-024-02927-0. Epub 2024 Jul 11. Arch Sex Behav. 2024. PMID: 38992202
-
Race, ethnicity and COVID-19 vaccine concerns: A latent class analysis of data during early phase of vaccination.SSM Popul Health. 2022 Jun;18:101073. doi: 10.1016/j.ssmph.2022.101073. Epub 2022 Mar 17. SSM Popul Health. 2022. PMID: 35313704 Free PMC article.
-
Aging Adults' Motivation to Use Embodied Conversational Agents in Instrumental Activities of Daily Living: Results of Latent Profile Analysis.Int J Environ Res Public Health. 2022 Feb 18;19(4):2373. doi: 10.3390/ijerph19042373. Int J Environ Res Public Health. 2022. PMID: 35206564 Free PMC article.
-
Callous-unemotional traits and anxiety in adolescents: a latent profile analysis to identify different types of antisocial behavior in a high-risk community sample.Child Adolesc Psychiatry Ment Health. 2022 Jul 19;16(1):58. doi: 10.1186/s13034-022-00493-8. Child Adolesc Psychiatry Ment Health. 2022. PMID: 35854316 Free PMC article.
References
-
- Asparouhov, T. , & Muthèn, B. (2014a). Auxiliary variables in mixture modeling: Three‐step approaches using mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21, 329–341. 10.1080/10705511.2014.915181 - DOI
-
- Asparouhov, T. , & Muthén, B. (2014b). Auxiliary variables in mixture modeling: Using the bch method in Mplus to estimate a distal outcome model on an arbitrary secondary model. Retrieved from http://www.statmodel.com/examples/webnotes/webnote21.pdf
-
- Bakk, Z. , Oberski, D. , & Vermunt, J. (2014). Relating latent class assignments to external variables: Standard errors for correct inference. Political Analysis, 22, 520–540. 10.1093/pan/mpu003 - DOI
-
- Bakk, Z. , Oberski, D. L. , & Vermunt, J. K. (2016). Relating latent class membership to continuous distal outcomes: Improving the LTB approach and a modified three‐step implementation. Structural Equation Modeling: A Multidisciplinary Journal, 23, 278–289. 10.1080/10705511.2015.1049698 - DOI
MeSH terms
LinkOut - more resources
Full Text Sources