Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 10;63(23):14840-14866.
doi: 10.1021/acs.jmedchem.0c01345. Epub 2020 Nov 17.

SAR Investigation and Discovery of Water-Soluble 1-Methyl-1,4-dihydroindeno[1,2- c]pyrazoles as Potent Tubulin Polymerization Inhibitors

Affiliations

SAR Investigation and Discovery of Water-Soluble 1-Methyl-1,4-dihydroindeno[1,2- c]pyrazoles as Potent Tubulin Polymerization Inhibitors

Ying-Jie Cui et al. J Med Chem. .

Abstract

Taking the previously discovered 1-methyl-1,4-dihydroindeno[1,2c]pyrazol derivative LL01 as a lead, systematic structural modifications were made at the phenolic 6- and 7-positions and the aniline at the 3-position of the indenopyrazole core to investigate the SARs and to improve water solubility. Among the designed indenopyrazoles ID01-ID33, a series of potent MTAs were identified. As the hydrochloride salt(s), ID09 and ID33 showed excellent aqueous solubility and favorable Log P value and displayed noteworthily low nanomolar potency against a variety of tumor cells, including those taxol-resistant ones. They inhibited tubulin polymerization, disrupted cellular microtubule networks by targeting the colchicine site, and promoted HepG2 cell cycle arrest and cell apoptosis. In the HepG2 xenograft mouse model, ID09 and ID33 effectively inhibited tumor growth at an oral dose of 25 mg/kg. At an intravenous (iv) injection dose of 10 mg/kg every other day, ID09 suppressed tumor growth by 68% without obvious toxicity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources