Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1987;27(4-6):807-13.
doi: 10.1016/0022-4731(87)90153-1.

Developmental changes in responsiveness to vitamin D metabolites

Affiliations
Review

Developmental changes in responsiveness to vitamin D metabolites

D Sömjen et al. J Steroid Biochem. 1987.

Abstract

We have demonstrated that epiphyseal chondroblasts contain specific receptors for 24R,25-dihydroxy vitamin D3(24,25(OH)2D3) while diaphyseal osteoblasts contain specific receptors for 1 alpha 25-dihydroxy vitamin D3(1,25(OH)2D3). Both metabolites induce DNA synthesis and creatine kinase (CKBB) activity. We have also found that the responsiveness of rat kidney to these metabolites changes during development. In embryonic and early postnatal stages, the kidney responds to 24,25(OH)2D3, later to both 24,25(OH)2D3 and 1,25(OH)2D3, and the mature kidney only to 1,25(OH)2D3. These responses correlate with changes in the specific receptors present in the kidney. Furthermore, we have compared developmental changes in skeletal (epiphysis, diaphysis and mandibular condyle) and non-skeletal (kidney, cerebellum, cerebrum, liver and pituitary) tissue in both rat (a postnatal developer) and rabbit (a perinatal developer). Epiphyseal or diaphyseal chondroblasts at any stage of development were predominantly responsive to 24,25(OH)2D3, whereas osteoblasts were responsive to 1,25(OH)2D3. In contrast, condylar chondroblasts, kidney, cerebellum and pituitary responded to 24,25(OH)2D3 during early development and subsequently developed responsiveness to 1,25(OH)2D3. Using primary cell cultures from kidneys at different stages of maturation, we showed the same developmental pattern as in vivo. Chronic treatment of the cells with 24,25(OH)2D3, but not 1,25(OH)2D3, caused precocious development of responsiveness to 1,25(OH)2D3 in culture. We suggest that 24,25(OH)2D3 acts as a maturation factor, during early development in kidney, and probably in other tissues, possibly by induction of receptor to 1,25(OH)2D3, accompanied by down-regulation of its own receptor.

PubMed Disclaimer