Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 20:753:142249.
doi: 10.1016/j.scitotenv.2020.142249. Epub 2020 Sep 8.

Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions

Affiliations
Review

Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions

Willis Gwenzi et al. Sci Total Environ. .

Abstract

Biochars are low-cost and renewable biomaterials with several applications, including soil amendment, mitigation of greenhouse gas emissions, and removal of both inorganic and organic contaminants in aqueous systems. An increasing body of recent evidence indicates that biochars can also remove gaseous chemical contaminants, such as those occurring in industrial flue gases. However, unlike other applications such as in agroecosystems, soil amendments, and aquatic systems, comprehensive reviews on biochar applications in the field of air pollution control are still lacking. The current paper examined existing evidence to understand the nature of contaminants, particularly the gaseous ones, potential applications, constraints, and future research needs pertaining to biochar applications in air pollution control. The preparation of biochars and their functionalized derivatives, and the properties influencing their capacity to remove gaseous contaminants are summarized. The removal capacity and mechanisms of various organic and inorganic gaseous contaminants by biochars are discussed. Evidence shows that biochars effectively remove metal vapours, particularly elemental mercury (Hg0), acidic gases (H2S, SO2, CO2), ozone, nitrogen oxides (NOx), and organic contaminants including aromatic compounds, volatile organic compounds, and odorous substances. The mechanisms for the removal of gaseous contaminants, including; adsorption, precipitation, and size exclusion were presented. Potential industrial application domains include remediation of gaseous emissions from incinerators, waste-to-energy systems, kilns, biomass and coal-fired boilers/cookers, cremation, smelters, wastewater treatment, and agricultural production systems including livestock husbandry. These industrial applications, coupled with the renewable, low-cost and sustainable nature of biochars, point to opportunities to further develop and scale up the biochar technology in the air pollution control industry. However, the biochar-based air filter technology still faces several challenges, largely stemming from constraints and several knowledge gaps, which were highlighted. Hence, further research is required to address these constraints and knowledge gaps before the benefits of the biochar-based air filters are realized.

Keywords: Acidic gases; Industrial applications; Nitrogen oxides; Removal mechanisms; Toxic metals; Volatile organic compounds.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources