Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2020 Oct 26:14:573974.
doi: 10.3389/fninf.2020.573974. eCollection 2020.

Editorial: Deep Learning in Aging Neuroscience

Affiliations
Editorial

Editorial: Deep Learning in Aging Neuroscience

Javier Ramírez et al. Front Neuroinform. .
No abstract available

Keywords: automated diagnosis; brain age estimation; brain image segmentation; convolutional neural networks; deep learning; neurodegenerative diseases.

PubMed Disclaimer

Comment on

  • Editorial on the Research Topic Deep Learning in Aging Neuroscience

Similar articles

References

    1. Bengio Y., Lamblin P., Popovici D., Larochelle H. (2006). Greedy layer-wise training of deep networks. In Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS - 06 (Cambridge, MA: MIT Press; ), 153–160.
    1. Cole J. H., Franke K. (2017). Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40, 681–690. 10.1016/j.tins.2017.10.001 - DOI - PubMed
    1. Hinton G. E., Osindero S., Teh Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554. 10.1162/neco.2006.18.7.1527 - DOI - PubMed
    1. Krizhevsky A., Sutskever I., Hinton G. E. (2017). ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90. 10.1145/3065386 - DOI
    1. LeCun Y., Bengio Y., Hinton G. (2015). Deep learning. Nature 521, 436–444. 10.1038/nature14539 - DOI - PubMed

Publication types

LinkOut - more resources