Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 19;16(11):e1008406.
doi: 10.1371/journal.pcbi.1008406. eCollection 2020 Nov.

Evolution of multicellular life cycles under costly fragmentation

Affiliations

Evolution of multicellular life cycles under costly fragmentation

Yuriy Pichugin et al. PLoS Comput Biol. .

Abstract

A fascinating wealth of life cycles is observed in biology, from unicellularity to the concerted fragmentation of multicellular units. However, the understanding of factors driving their evolution is still limited. We show that costs of fragmentation have a major impact on the evolution of life cycles due to their influence on the growth rates of the associated populations. We model a group structured population of undifferentiated cells, where cell clusters reproduce by fragmentation. Fragmentation events are associated with a cost expressed by either a fragmentation delay, an additional risk, or a cell loss. The introduction of such fragmentation costs vastly increases the set of possible life cycles. Based on these findings, we suggest that the evolution of life cycles involving splitting into multiple offspring can be directly associated with the fragmentation cost. Moreover, the impact of this cost alone is strong enough to drive the emergence of multicellular units that eventually split into many single cells, even under scenarios that strongly disfavour collectives compared to solitary individuals.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Examples of multiple fragmentation in nature and their interpretation in terms of our model.
(A) M. polyspora grows multiple endopsora, released after the maternal cell lysis (picture adopted from [27], Copyright (1998) National Academy of Sciences). (B) segmented filamentous bacteria grows two holdfast-bearing cells inside a maternal cell. These cells are released in the result of the maternal cell lysis (picture adopted from [29]). The death of maternal cells is the fragmentation cost in these two examples. (C) genus Stanieria grows multiple cells within a single extracellular matrix. These cells are released simultaneously upon the break of the matrix (Picture adopted from [30]). The loss of the extracellular matrix corresponds to a fragmentation cost here.
Fig 2
Fig 2. Model of life cycles.
(A) Multicellular units increase in size and fragment to produce new units. Cell division (bi) and unit death (di) rates depend on the size of the unit and are determined by the environment. If the fragmentation process is costly, the division rate at the maturity size may be smaller than prescribed by the environment alone bmbm (see Eq (1)), the death rate at the maturity size may be larger than prescribed by the environment alone dmdm (see Eq (2)), and some cells may be lost upon the fragmentation (highlighted in blue). In this example, m = 4, so the unit fragments when it reaches five cells, one cell is lost in fragmentation and the remaining four are split by the fragmentation mode 2+2. (B) The fragmentation mode of cell clusters can be described by a sum of integers. All possible fragmentations of units of size 2, 3, and 4 are presented here. Different life cycles have different growth rates and we are looking for the fastest growth in this context.
Fig 3
Fig 3. The majority of life cycles cannot win growth competition and are thus called forbidden.
(A) All possible fragmentation modes with combined fragments size equal to 7. Allowed modes are further broken into binary, (nearly) equal split, seeding, and other classes, according to the definitions in the main text. For each of the forbidden modes, a couple of different subsets of parts with the same sum are underlined. (B) Proportions of different classes of fragmentation modes for different combined size at fragmentation. For sizes 2 and 3, all partitions are allowed. Starting from size 4, some are forbidden (for 4, it is 2+1+1). The proportion of forbidden modes grows rapidly with the size. For even sizes, more forbidden modes exist. Among the allowed modes, the proportions of binary, (nearly) equal split and seeding classes rapidly declines.
Fig 4
Fig 4. Fragmentations by binary and (nearly) equal split partitions are likely to evolve in random environments.
The top panels present the ten most frequent fragmentation modes for (A) fragmentation with delay, (B) fragmentation with increased death risk and (C) fragmentation with cell loss, respectively. Each bar shows the frequency of the corresponding life cycle to be evolutionarily optimal. The colour of the bar represents the class of the life cycle, see Fig 3. (Nearly) equal split life cycles are represented in the form of 1+ … + 1 and the total number of cells Σ. The bottom panels (D—F) present the fractions of each of binary fragmentation, (nearly) equal split, seeding, and other allowed fragmentation modes as functions of fragmentation cost for the same scenarios. The majority of random environments promote the evolution of (nearly) equal split and binary fragmentation modes.
Fig 5
Fig 5. Multicellular units can evolve in detrimental environments.
Each panel presents the fraction of the minimal, binary life cycle 1+1 (green) and equal split life cycles with a larger maturity size (orange) for random detrimental environments, where division rates decrease and death rates increase with cluster size. Panel (A) shows fragmentation with delay, (B)—fragmentation with risk, and (C)—fragmentation with cell loss. The increase in fragmentation costs, drives the evolution of life cycles involving formation of multicellular units. All evolutionarily optimal life cycles found have the form 1+ … + 1.

Similar articles

Cited by

References

    1. Stearns SC. The evolution of life histories. Oxford University Press, NY; 1992.
    1. Bonner JT. The origins of multicellularity. Integrative Biology. 1998;1:27–36. 10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0.CO;2-6 - DOI
    1. Roze D, Michod RE. Mutation, multilevel selection, and the evolution of propagule size during the origin of multicellularity. The American Naturalist. 2001;158(6):638–654. 10.1086/323590 - DOI - PubMed
    1. Rainey PB, Kerr B. Cheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. BioEssays. 2010;32(10):872–880. 10.1002/bies.201000039 - DOI - PubMed
    1. Nowak MA, Tarnita CE, Wilson EO. The evolution of eusociality. Nature. 2010;466(7310):1057–1062. 10.1038/nature09205 - DOI - PMC - PubMed

Supplementary concepts