Tensile and Flexural Properties of Silica Nanoparticles Modified Unidirectional Kenaf and Hybrid Glass/Kenaf Epoxy Composites
- PMID: 33217951
- PMCID: PMC7698630
- DOI: 10.3390/polym12112733
Tensile and Flexural Properties of Silica Nanoparticles Modified Unidirectional Kenaf and Hybrid Glass/Kenaf Epoxy Composites
Abstract
This paper investigates the influence of silica nanoparticles on the mechanical properties of a unidirectional (UD) kenaf fiber reinforced polymer (KFRP) and hybrid woven glass/UD kenaf fiber reinforced polymer (GKFRP) composites. In this study, three different nanosilica loadings, i.e., 5, 13 and 25 wt %, and untreated kenaf fiber yarns were used. The untreated long kenaf fiber yarn was wound onto metal frames to produce UD kenaf dry mat layers. The silane-surface-treated nanosilica was initially dispersed into epoxy resin using a high-vacuum mechanical stirrer before being incorporated into the UD untreated kenaf and hybrid woven glass/UD kenaf fiber layers. Eight different composite systems were made, namely KFRP, 5 wt % nanosilica in UD kenaf fiber reinforced polymer composites (5NS-KFRP), 13% nanosilica in UD kenaf fiber reinforced polymer composites (13NS-KFRP), 25 wt % nanosilica in UD kenaf fiber reinforced polymer composites (25NS-KFRP), GKFRP, 5 wt % nanosilica in hybrid woven glass/UD kenaf fiber reinforced polymer composites (5NS-GKFRP), 13 wt % nanosilica in hybrid woven glass/UD kenaf fiber reinforced polymer composites (13NS-GKFRP) and 25 wt % nanosilica in hybrid woven glass/UD kenaf fiber reinforced polymer composites (25NS-GKFRP). All composite systems were tested in tension and bending in accordance with ASTM standards D3039 and D7264, respectively. Based on the results, it was found that the incorporation of homogeneously dispersed nanosilica significantly improved the tensile and flexural properties of KFRP and hybrid GKFRP composites even at the highest loading of 25 wt % nanosilica. Based on the scanning electron microscopy (SEM) examination of the fractured surfaces, it is suggested that the silane-treated nanosilica exhibits good interactions with epoxy and the kenaf and glass fibers. Therefore, the presence of nanosilica in an epoxy polymer contributes to a stiffer matrix that, effectively, enhances the capability of transferring a load to the fibers. Thus, this supports greater loads and improves the mechanical properties of the kenaf and hybrid composites.
Keywords: flexural properties; glass fiber; kenaf fiber; nanosilica; polymer composites; tensile properties.
Conflict of interest statement
The authors declare no conflict of interest.
Figures








References
-
- Liu X., Wang K., Zhang W., Qi C., Zhang S., Li J. Hybrid HNTs-kenaf fiber modified soybean meal-based adhesive with PTGE for synergistic reinforcement of wet bonding strength and toughness. Int. J. Adhes. Adhes. 2018;87:173–180. doi: 10.1016/j.ijadhadh.2018.10.009. - DOI
-
- Manap N., Jumahat A., Sapiai N. Effect of nanosilica content on longitudinal and transverse tensile properties of unidirectional kenaf composite. J. Teknol. 2015;76:123–130. doi: 10.11113/jt.v76.5922. - DOI
-
- Saba N., Paridah M., Jawaid M. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Constr. Build. Mater. 2015;76:87–96. doi: 10.1016/j.conbuildmat.2014.11.043. - DOI
-
- Ramesh M. Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties. Prog. Mater. Sci. 2016;78–79:1–92. doi: 10.1016/j.pmatsci.2015.11.001. - DOI
-
- Saba N., Alothman O.Y., Saba N., Jawaid M. Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: Mechanical and thermomechanical properties. Constr. Build. Mater. 2019;201:138–148. doi: 10.1016/j.conbuildmat.2018.12.182. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources