Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 20;20(1):460.
doi: 10.1186/s12886-020-01724-2.

Consistency between optical coherence tomography and humphrey visual field for evaluating glaucomatous defects in high myopic eyes

Affiliations

Consistency between optical coherence tomography and humphrey visual field for evaluating glaucomatous defects in high myopic eyes

Wen Wen et al. BMC Ophthalmol. .

Abstract

Background: The study is to investigate the influence of high myopia on the consistency between optical coherence tomography (OCT) and visual field in primary open-angle glaucoma (POAG).

Methods: We enrolled 37 patients with POAG with high myopia (POAG-HM group), 27 patients with POAG without high myopia (POAG group), and 29 controls with high myopia (HM group). All subjects underwent Humphrey perimetry (30-2 and 10-2 algorithms). The peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured using Cirrus HD-OCT. Spearman's rank correlation analysis was used to determine correlations between OCT and perimetric parameters. Agreement was analyzed by cross-classification and weighted κ statistics.

Results: In POAG group, the cross-classification analysis showed strong agreement between the inferior temporal GCIPL thickness and the mean sensitivity (MS) of 10-2 algorithms (κ = 0.5447, P = 0.0048), and good agreement between the superior and inferior RNFL thicknesses and 30-2 MS (κ = 0.4407 and 0.4815; P < 0.05). In the POAG-HM group, only the inferior temporal GCIPL thickness showed good agreement with 10-2 MS (κ = 0.3155, P = 0.0289) and none of the RNFL sectors were in good agreement with the corresponding MS.

Conclusions: In POAG patients with high myopia, changes in macular measurements were in accordance with visual field defects, and RNFL thickness did not consistently decline with visual field defects due to the effects of high myopia. This study suggests that during diagnosis and follow-up of glaucoma with high myopia, more attention need to be focused on structure and functional defects in macular areas.

Keywords: Agreement; Glaucoma; Humphrey visual field; Myopia; Optical coherence tomography.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Similar articles

Cited by

References

    1. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–146. doi: 10.1001/archopht.1982.01030030137016. - DOI - PubMed
    1. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–464. doi: 10.1016/0002-9394(89)90488-1. - DOI - PubMed
    1. Bowd C, Zangwill LM, Medeiros FA, et al. Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci. 2006;47:2889–2895. doi: 10.1167/iovs.05-1489. - DOI - PubMed
    1. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123:464–470. doi: 10.1001/archopht.123.4.464. - DOI - PMC - PubMed
    1. Leung CK, Cheung CY, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–222. doi: 10.1167/iovs.09-3468. - DOI - PubMed