Artificial intelligence for cancer detection of the upper gastrointestinal tract
- PMID: 33222330
- DOI: 10.1111/den.13897
Artificial intelligence for cancer detection of the upper gastrointestinal tract
Abstract
In recent years, artificial intelligence (AI) has been found to be useful to physicians in the field of image recognition due to three elements: deep learning (that is, CNN, convolutional neural network), a high-performance computer, and a large amount of digitized data. In the field of gastrointestinal endoscopy, Japanese endoscopists have produced the world's first achievements of CNN-based AI system for detecting gastric and esophageal cancers. This study reviews papers on CNN-based AI for gastrointestinal cancers, and discusses the future of this technology in clinical practice. Employing AI-based endoscopes would enable early cancer detection. The better diagnostic abilities of AI technology may be beneficial in early gastrointestinal cancers in which endoscopists have variable diagnostic abilities and accuracy. AI coupled with the expertise of endoscopists would increase the accuracy of endoscopic diagnosis.
Keywords: artificial intelligence; esophageal squamous cell carcinoma; gastric cancer; helicobacter pylori; pharyngeal cancer.
© 2020 Japan Gastroenterological Endoscopy Society.
Similar articles
-
Artificial Intelligence in Upper Gastrointestinal Endoscopy.Dig Dis. 2022;40(4):395-408. doi: 10.1159/000518232. Epub 2021 Jul 21. Dig Dis. 2022. PMID: 34348267 Review.
-
Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging.J Gastroenterol Hepatol. 2021 Feb;36(2):482-489. doi: 10.1111/jgh.15190. Epub 2020 Jul 28. J Gastroenterol Hepatol. 2021. PMID: 32681536 Free PMC article.
-
Utilizing artificial intelligence in endoscopy: a clinician's guide.Expert Rev Gastroenterol Hepatol. 2020 Aug;14(8):689-706. doi: 10.1080/17474124.2020.1779058. Epub 2020 Jun 17. Expert Rev Gastroenterol Hepatol. 2020. PMID: 32500760 Review.
-
Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms.Digestion. 2024;105(6):419-435. doi: 10.1159/000540251. Epub 2024 Jul 26. Digestion. 2024. PMID: 39068926 Review.
-
Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists.Dig Endosc. 2021 Jan;33(1):141-150. doi: 10.1111/den.13688. Epub 2020 Jun 2. Dig Endosc. 2021. PMID: 32282110 Free PMC article.
Cited by
-
Epidemiological landscape of esophageal cancer in Asia: Results from GLOBOCAN 2020.Thorac Cancer. 2023 Apr;14(11):992-1003. doi: 10.1111/1759-7714.14835. Epub 2023 Mar 14. Thorac Cancer. 2023. PMID: 36918204 Free PMC article.
-
Gastric Cancer Detection with Ensemble Learning on Digital Pathology: Use Case of Gastric Cancer on GasHisSDB Dataset.Diagnostics (Basel). 2024 Aug 12;14(16):1746. doi: 10.3390/diagnostics14161746. Diagnostics (Basel). 2024. PMID: 39202233 Free PMC article.
-
Esophagogastroduodenoscopy Outcomes Variated by the Time of the Day: A Single-Center Experience.J Clin Med. 2023 Jan 21;12(3):863. doi: 10.3390/jcm12030863. J Clin Med. 2023. PMID: 36769512 Free PMC article.
-
Automated Segmentation of Optical Coherence Tomography Images of the Human Tympanic Membrane Using Deep Learning.Algorithms. 2023 Sep;16(9):445. doi: 10.3390/a16090445. Epub 2023 Sep 17. Algorithms. 2023. PMID: 39104565 Free PMC article.
-
Global research trends on the association between gastric cancer and chronic atrophic gastritis: a bibliometric analysis.Discov Oncol. 2025 Aug 24;16(1):1603. doi: 10.1007/s12672-025-03392-4. Discov Oncol. 2025. PMID: 40849862 Free PMC article.
References
-
- Litjens G, Kooi T, Bejnordi BE et al. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42: 60-88.
-
- Sánchez-Peralta LF, Bote-Curiel L, Picón A, Sánchez-Margallo FM, Pagador JB. Deep learning to find colorectal polyps in colonoscopy: A systematic literature review. Artif Intell Med 2020; 108: 101923.
-
- Yang YJ. The future of capsule endoscopy: The role of artificial intelligence and other technical advancements. Clin Endosc 2020; 53(4): 387-94.
-
- Hirasawa T, Aoyama K, Tanimoto T et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic image. Gastric Cancer 2018; 21: 653-60.
-
- Menon S, Trudgill N. How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis. Endosc Int Open 2014; 2: E46-50.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical