Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct;10(5):1461-1479.
doi: 10.21037/cdt-20-238.

In vivo imaging of vulnerable plaque with intravascular modalities: its advantages and limitations

Affiliations
Review

In vivo imaging of vulnerable plaque with intravascular modalities: its advantages and limitations

Satoshi Kitahara et al. Cardiovasc Diagn Ther. 2020 Oct.

Abstract

In vivo imaging of plaque instability has been considered to have a great potential to predict future coronary events and evaluate the stabilization effect of novel anti-atherosclerotic medical therapies. Currently, there are several intravascular imaging modalities which enable to visualize plaque components associated with its vulnerability. These include virtual histology intravascular ultrasound (VH-IVUS), integrated backscatter IVUS (IB-IVUS), optical coherence tomography (OCT), near-infrared spectroscopy and coronary angioscopy. Recent studies have shown that these tools are applicable for risk stratification of cardiovascular events as well as drug efficacy assessment. However, several limitation exists in each modality. The current review paper will outline advantages and limitation of VH-IVUS, IB-IVUS, OCT, NIRS and coronary angioscopy imaging.

Keywords: Vulnerable plaque; integrated backscatter intravascular ultrasound (IB-IVUS), coronary angioscopy; intravascular imaging; near-infrared spectroscopy (NIRS); optical coherence tomography (OCT); virtual-histology intravascular ultrasound (VH-IVUS).

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/cdt-20-238). The series “Intracoronary Imaging” was commissioned by the editorial office without any funding or sponsorship. YK serves as an unpaid editorial board member of Cardiovascular Diagnosis and Therapy from Jul 2019 to Jun 2021. The authors have no other conflicts of interest to declare.

Figures

Figure 1
Figure 1
The recurrence of ACS due to progression of lipid-rich plaque containing cholesterol crystal (28). (A) A 60-year-old man with ST-segment elevation myocardial infarction received DES implantation at the middle segment of LAD (dotted line). There was a mild residual stenosis in LAD (red arrow). [1–4] correspond to OCT images in (B). (B) OCT imaging visualized the presence of lipid-rich plaque (L) harbouring cholesterol crystal (white triangle). (C) One year later, non-ST-segment elevation myocardial infarction occurred due to the progression of lipid-rich lesions with cholesterol crystal despite statin therapy (red arrow). ACS, acute coronary syndrome; DES, drug-eluting stent; LAD, left anterior descending artery; OCT, optical coherence tomography.
Figure 2
Figure 2
Limitation of OCT imaging for correct diagnosis of plaque erosion (35). (A) A 93-year-old woman was hospitalized due to anterior STEMI. Coronary angiography identified TIMI grade II flow with severe stenosis within LAD. [1-4] correspond to OCT images in (B and C). (B,C) The surface of culprit lesion was invisible due to its overlying thrombus (*) [2-4]. (D) After retrieving red thrombus with thrombectomy catheter, TIMI grade III flow was achieved without any residual stenosis. 1’-4’ correspond to OCT images in (E and F). (E) On OCT imaging after thrombectomy, an intact fibrous cap and signal attenuation were observed [1’-4’]. This lesion was accompanied by adjacent focal signal-rich region (3’: white arrows), suggesting the small lipidic plaque with superficial macrophages. IVUS, intravascular ultrasound; LAD, left anterior descending artery; OCT, optical coherence tomography; STEMI, ST-segment elevation myocardial infarction; TIMI, thrombolysis in myocardial infarction.
Figure 3
Figure 3
Progression of non-obstructive lesion harbouring high Max4 mmLCBI. (A) 70-year old gentleman received diagnostic coronary angiography due to suspected anginal chest symptom. There was a mild stenosis at the proximal segment of RCA (red arrow). (B) NIRS imaging identified high Max4 mmLCBI (=882) at the corresponding lesion (red arrow). (C) One year later, ACS occurred due to the progression of the lesion with high Max4 mmLCBI (red arrow). ACS, acute coronary syndrome; LCBI, lipid core burden index; NIRS, near-infrared spectroscopy; RCA, right coronary artery.

Similar articles

Cited by

References

    1. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989;79:733-43. 10.1161/01.CIR.79.4.733 - DOI - PubMed
    1. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262-75. 10.1161/01.ATV.20.5.1262 - DOI - PubMed
    1. Davies MJ, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med 1984;310:1137-140. 10.1056/NEJM198405033101801 - DOI - PubMed
    1. DeWood MA, Spores J, Notske R, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 1980;303:897-902. 10.1056/NEJM198010163031601 - DOI - PubMed
    1. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93:1354-63. 10.1161/01.CIR.93.7.1354 - DOI - PubMed