Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;47(12):9531-9540.
doi: 10.1007/s11033-020-05935-0. Epub 2020 Nov 22.

Muscle differentiation induced by p53 signaling pathway-related genes in myostatin-knockout quail myoblasts

Affiliations

Muscle differentiation induced by p53 signaling pathway-related genes in myostatin-knockout quail myoblasts

Jeong-Woong Park et al. Mol Biol Rep. 2020 Dec.

Abstract

The myostatin (MSTN) gene is of interest in the livestock industry because mutations in this gene are closely related to growth performance and muscle differentiation. Thus, in this study, we established MSTN knockout (KO) quail myoblasts (QM7) and investigated the regulatory pathway of the myogenic differentiation process. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to generate MSTN KO QM7 cells and subsequently isolated a single cell-derived MSTN KO QM7 subline with 10- and 16-nucleotide deletions that induced translational frameshift mutations. The differentiation capacity and proliferation rate of MSTN KO QM7 cells were enhanced. We conducted next-generation-sequencing (NGS) analysis to compare the global gene expression profiles of wild-type (WT) QM7 and MSTN KO QM7 cells. Intriguingly, NGS expression profiles showed different expression patterns of p21 and p53 in MSTN KO QM7 cells. Moreover, we identified downregulated expression patterns of leukemia inhibitory factor and DNA Damage Inducible Transcript 4, which are genes in the p53 signaling pathway. Using quantitative RT-PCR (qRT-PCR) analysis and western blotting, we concluded that p53-related genes promote the cell cycle by upregulating p21 and enhancing muscle differentiation in MSTN KO QM7 cells. These results could be applied to improve economic traits in commercial poultry by regulating MSTN-related networks.

Keywords: MSTN knockout; Muscle differentiation; Quail; p53 signaling pathway.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources