Effect of Stereochemistry on Chirality and Gelation Properties of Supramolecular Self-Assemblies
- PMID: 33225542
- DOI: 10.1002/chem.202004533
Effect of Stereochemistry on Chirality and Gelation Properties of Supramolecular Self-Assemblies
Abstract
Although chiral nanostructures have been fabricated at various structural levels, the transfer and amplification of chirality from molecules to supramolecular self-assemblies are still puzzling, especially for heterochiral molecules. Herein, four series of C2 -symmetrical dipeptide-based derivatives bearing various amino acid sequences and different chiralities are designed and synthesized. The transcription and amplification of molecular chirality to supramolecular assemblies are achieved. The results show that supramolecular chirality is only determined by the amino acid adjacent to the benzene core, irrespective of the absolute configuration of the C-terminal amino acid. In addition, molecular chirality also has a significant influence on the gelation behavior. For the diphenylalanine-based gelators, the homochiral gelators can be gelled through a conventional heating-cooling process, whereas heterochiral gelators form translucent stable gels under sonication. The racemic gels possess higher mechanical properties than those of the pure enantiomers. All of these results contribute to an increasing knowledge over control of the generation of specific chiral supramolecular structures and the development of new optimized strategies to achieve functional supramolecular organogels through heterochiral and racemic systems.
Keywords: chiral nanostructures; dipeptides; molecular chirality; self-assembly; supramolecular organogels.
© 2020 Wiley-VCH GmbH.
Similar articles
-
Gelation induced supramolecular chirality: chirality transfer, amplification and application.Soft Matter. 2014 Aug 14;10(30):5428-48. doi: 10.1039/c4sm00507d. Soft Matter. 2014. PMID: 24975350
-
Tuning the gelation ability of racemic mixture by melamine: enhanced mechanical rigidity and tunable nanoscale chirality.Langmuir. 2014 Sep 9;30(35):10772-8. doi: 10.1021/la502799j. Epub 2014 Aug 25. Langmuir. 2014. PMID: 25136742
-
Supramolecular Nanostructures of Chiral Perylene Diimides with Amplified Chirality for High-Performance Chiroptical Sensing.Adv Mater. 2017 Jun;29(21). doi: 10.1002/adma.201605828. Epub 2017 Mar 29. Adv Mater. 2017. PMID: 28370408
-
Light-triggered Modulation of Supramolecular Chirality.Chemistry. 2023 Apr 18;29(22):e202203794. doi: 10.1002/chem.202203794. Epub 2023 Mar 8. Chemistry. 2023. PMID: 36653305 Review.
-
Supramolecular Chirality Transfer toward Chiral Aggregation: Asymmetric Hierarchical Self-Assembly.Adv Sci (Weinh). 2021 Mar 1;8(8):2002132. doi: 10.1002/advs.202002132. eCollection 2021 Apr. Adv Sci (Weinh). 2021. PMID: 33898167 Free PMC article. Review.
Cited by
-
Chirality Effects in Peptide Assembly Structures.Front Bioeng Biotechnol. 2021 Jun 22;9:703004. doi: 10.3389/fbioe.2021.703004. eCollection 2021. Front Bioeng Biotechnol. 2021. PMID: 34239866 Free PMC article. Review.
-
Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes.Nanomaterials (Basel). 2021 Dec 5;11(12):3299. doi: 10.3390/nano11123299. Nanomaterials (Basel). 2021. PMID: 34947648 Free PMC article.
References
-
- M. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304-7397.
-
- H. Liu, B. Pang, R. Garces, R. Dervisoglu, L. Chen, L. Andreas, K. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16323-16328;
-
- Angew. Chem. 2018, 130, 16561-16566.
-
- P. Duan, H. Cao, L. Zhang, M. Liu, Soft Matter 2014, 10, 5428-5448.
-
- A. Ajayaghosh, R. Varghese, S. J. George, C. Vijayakumar, Angew. Chem. Int. Ed. 2006, 45, 1141-1144;
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous