Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 15:410:124568.
doi: 10.1016/j.jhazmat.2020.124568. Epub 2020 Nov 17.

Chemical transformations of nanoscale zinc oxide in simulated sweat and its impact on the antibacterial efficacy

Affiliations

Chemical transformations of nanoscale zinc oxide in simulated sweat and its impact on the antibacterial efficacy

Xiaoting Qian et al. J Hazard Mater. .

Abstract

Nanoscale zinc oxide (n-ZnO) is widely used in personal care products and textiles, thus, it would likely be released into human sweat. To better evaluate the potential human health risks of n-ZnO, it is essential to understand its chemical transformations in physiological solutions, such as human sweat, and the resulting changes in the n-ZnO bioavailability. Here, two types of n-ZnO, ZnO nanoparticles (ZnO-NPs) and nanorod-based ZnO nanospheres (ZnO-NSs) were synthesized and incubated in 3 types of simulated sweat with different pH values and phosphate concentrations. The content of Zn3(PO4)2 in the transformed n-ZnO was quantified by selective dissolution of Zn3(PO4)2 in 0.35 M ammonia solution where 100% and 5.5% of Zn3(PO4)2 and ZnO were dissolved, respectively. The kinetics analysis indicated that by 24-48 h the content of Zn3(PO4)2 reached the maximum, being 15-21% at pH 8.0 and 45-70% at pH 5.5 or 4.3. Interestingly, no correlation was observed between the rate constants of Zn3(PO4)2 formation and the specific surface areas of n-ZnO, implying that chemical transformations from n-ZnO to Zn3(PO4)2 in the simulated sweat might not be simply attributed to dissolution and precipitation. Using a variety of characterization techniques, we demonstrated the formation of a ZnO‒Zn3(PO4)2 core-shell structure with the shell consisting of amorphous Zn3(PO4)2 at pH 8.0 and additionally of crystalline Zn3(PO4)2 and Zn3(PO4)2•4H2O at pH 5.5 or 4.3. The phosphate-induced transformation of n-ZnO in the simulated sweat at pH 5.5 and 4.3 greatly reduced the antibacterial efficacy of n-ZnO through moderating the nanoparticle dissolution, indicating limited bioavailability of the NPs upon transformation. The results improve the understanding of the fate and hazards of n-ZnO.

Keywords: Bioavailability; Nanoscale zinc oxide; Phosphate-induced transformation; Selective dissolution; Simulated sweat.

PubMed Disclaimer

Publication types

LinkOut - more resources