Natural hybrid silica/protein superstructure at atomic resolution
- PMID: 33229574
- PMCID: PMC7733841
- DOI: 10.1073/pnas.2019140117
Natural hybrid silica/protein superstructure at atomic resolution
Abstract
Formation of highly symmetric skeletal elements in demosponges, called spicules, follows a unique biomineralization mechanism in which polycondensation of an inherently disordered amorphous silica is guided by a highly ordered proteinaceous scaffold, the axial filament. The enzymatically active proteins, silicateins, are assembled into a slender hybrid silica/protein crystalline superstructure that directs the morphogenesis of the spicules. Furthermore, silicateins are known to catalyze the formation of a large variety of other technologically relevant organic and inorganic materials. However, despite the biological and biotechnological importance of this macromolecule, its tertiary structure was never determined. Here we report the atomic structure of silicatein and the entire mineral/organic hybrid assembly with a resolution of 2.4 Å. In this work, the serial X-ray crystallography method was successfully adopted to probe the 2-µm-thick filaments in situ, being embedded inside the skeletal elements. In combination with imaging and chemical analysis using high-resolution transmission electron microscopy, we provide detailed information on the enzymatic activity of silicatein, its crystallization, and the emergence of a functional three-dimensional silica/protein superstructure in vivo. Ultimately, we describe a naturally occurring mineral/protein crystalline assembly at atomic resolution.
Keywords: biomineralization; protein crystallography; silica; sponges.
Copyright © 2020 the Author(s). Published by PNAS.
Conflict of interest statement
The authors declare no competing interest.
Figures




Similar articles
-
Silintaphin-1--interaction with silicatein during structure-guiding bio-silica formation.FEBS J. 2011 Apr;278(7):1145-55. doi: 10.1111/j.1742-4658.2011.08040.x. Epub 2011 Mar 4. FEBS J. 2011. PMID: 21284806
-
Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules.FEBS J. 2012 May;279(10):1721-36. doi: 10.1111/j.1742-4658.2012.08533.x. Epub 2012 Apr 17. FEBS J. 2012. PMID: 22340505 Review.
-
Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica.Biomaterials. 2007 Oct;28(30):4501-11. doi: 10.1016/j.biomaterials.2007.06.030. Epub 2007 Jul 12. Biomaterials. 2007. PMID: 17628661
-
Complex structures - smart solutions: Formation of siliceous spicules.Commun Integr Biol. 2011 Nov 1;4(6):684-8. doi: 10.4161/cib.17090. Commun Integr Biol. 2011. PMID: 22446527 Free PMC article.
-
Biosilica: Molecular Biology, Biochemistry and Function in Demosponges as well as its Applied Aspects for Tissue Engineering.Adv Mar Biol. 2012;62:231-71. doi: 10.1016/B978-0-12-394283-8.00005-9. Adv Mar Biol. 2012. PMID: 22664124 Review.
Cited by
-
Arrested in Glass: Actin within Sophisticated Architectures of Biosilica in Sponges.Adv Sci (Weinh). 2022 Apr;9(11):e2105059. doi: 10.1002/advs.202105059. Epub 2022 Feb 13. Adv Sci (Weinh). 2022. PMID: 35156333 Free PMC article.
-
Insights into the structure and morphogenesis of the giant basal spicule of the glass sponge Monorhaphis chuni.Front Zool. 2021 Nov 8;18(1):58. doi: 10.1186/s12983-021-00440-x. Front Zool. 2021. PMID: 34749755 Free PMC article.
-
Honeycomb Biosilica in Sponges: From Understanding Principles of Unique Hierarchical Organization to Assessing Biomimetic Potential.Biomimetics (Basel). 2023 Jun 3;8(2):234. doi: 10.3390/biomimetics8020234. Biomimetics (Basel). 2023. PMID: 37366830 Free PMC article.
-
The genome of the reef-building glass sponge Aphrocallistes vastus provides insights into silica biomineralization.R Soc Open Sci. 2023 Jun 21;10(6):230423. doi: 10.1098/rsos.230423. eCollection 2023 Jun. R Soc Open Sci. 2023. PMID: 37351491 Free PMC article.
-
Inorganic Polymeric Materials for Injured Tissue Repair: Biocatalytic Formation and Exploitation.Biomedicines. 2022 Mar 11;10(3):658. doi: 10.3390/biomedicines10030658. Biomedicines. 2022. PMID: 35327460 Free PMC article. Review.
References
-
- Love G. D., et al. , Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009). - PubMed
-
- Wulff J., “Sponge contributions to the geology and biology of reefs: Past, present, and future” in Coral Reefs at the Crossroads, Hubbard D. K., Rogers C. S., Lipps J. H., Stanley G. D. Jr., Eds. (Springer Nature, 2016), pp. 103–126.
-
- Blunt J. W., Copp B. R., Keyzers R. A., Munro M. H. G., Prinsep M. R., Marine natural products. Nat. Prod. Rep. 32, 116–211 (2015). - PubMed
-
- Hentschel U., Piel J., Degnan S. M., Taylor M. W., Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012). - PubMed
Publication types
LinkOut - more resources
Full Text Sources