Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae
- PMID: 33229583
- PMCID: PMC7733801
- DOI: 10.1073/pnas.1918195117
Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae
Abstract
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. The primary mesenchyme cells (PMCs) are the cells that are responsible for spicule formation. PMCs endocytose sea water from the larval internal body cavity into a network of vacuoles and vesicles, where calcium ions are concentrated until they precipitate in the form of amorphous calcium carbonate (ACC). The mineral is subsequently transferred to the syncytium, where the spicule forms. Using cryo-soft X-ray microscopy we imaged intracellular calcium-containing particles in the PMCs and acquired Ca-L2,3 X-ray absorption near-edge spectra of these Ca-rich particles. Using the prepeak/main peak (L2'/ L2) intensity ratio, which reflects the atomic order in the first Ca coordination shell, we determined the state of the calcium ions in each particle. The concentration of Ca in each of the particles was also determined by the integrated area in the main Ca absorption peak. We observed about 700 Ca-rich particles with order parameters, L2'/ L2, ranging from solution to hydrated and anhydrous ACC, and with concentrations ranging between 1 and 15 M. We conclude that in each cell the calcium ions exist in a continuum of states. This implies that most, but not all, water is expelled from the particles. This cellular process of calcium concentration may represent a widespread pathway in mineralizing organisms.
Keywords: ACC; XAS; biomineralization; cryo-SXM; spectromicroscopy.
Conflict of interest statement
The authors declare no competing interest.
Figures





Similar articles
-
Elemental compositions of sea urchin larval cell vesicles evaluated by cryo-STEM-EDS and cryo-SEM-EDS.Acta Biomater. 2023 Jan 1;155:482-490. doi: 10.1016/j.actbio.2022.11.012. Epub 2022 Nov 12. Acta Biomater. 2023. PMID: 36375785
-
Initial stages of calcium uptake and mineral deposition in sea urchin embryos.Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):39-44. doi: 10.1073/pnas.1312833110. Epub 2013 Dec 16. Proc Natl Acad Sci U S A. 2014. PMID: 24344263 Free PMC article.
-
Calculations of the Evolution of the Ca L23 Fine Structure in Amorphous Calcium Carbonate.J Phys Chem B. 2022 Jul 14;126(27):5103-5109. doi: 10.1021/acs.jpcb.2c03440. Epub 2022 Jun 28. J Phys Chem B. 2022. PMID: 35763361
-
Biomineralization of the spicules of sea urchin embryos.Zoolog Sci. 2002 Mar;19(3):253-61. doi: 10.2108/zsj.19.253. Zoolog Sci. 2002. PMID: 12125922 Review.
-
Matrix and mineral in the sea urchin larval skeleton.J Struct Biol. 1999 Jun 30;126(3):216-26. doi: 10.1006/jsbi.1999.4105. J Struct Biol. 1999. PMID: 10475684 Review.
Cited by
-
Faster Crystallization during Coral Skeleton Formation Correlates with Resilience to Ocean Acidification.J Am Chem Soc. 2022 Jan 26;144(3):1332-1341. doi: 10.1021/jacs.1c11434. Epub 2022 Jan 17. J Am Chem Soc. 2022. PMID: 35037457 Free PMC article.
-
Calcium-vesicles perform active diffusion in the sea urchin embryo during larval biomineralization.PLoS Comput Biol. 2021 Feb 22;17(2):e1008780. doi: 10.1371/journal.pcbi.1008780. eCollection 2021 Feb. PLoS Comput Biol. 2021. PMID: 33617532 Free PMC article.
-
A guide into the world of high-resolution 3D imaging: the case of soft X-ray tomography for the life sciences.Biochem Soc Trans. 2022 Apr 29;50(2):649-663. doi: 10.1042/BST20210886. Biochem Soc Trans. 2022. PMID: 35257156 Free PMC article.
-
Carbonic anhydrases in development: morphological observations and gene expression profiling in sea urchin embryos exposed to acetazolamide.Open Biol. 2023 Jan;13(1):220254. doi: 10.1098/rsob.220254. Epub 2023 Jan 25. Open Biol. 2023. PMID: 36597694 Free PMC article.
-
Chemical composition from photos: Dried solution drops reveal a morphogenetic tree.Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2405963121. doi: 10.1073/pnas.2405963121. Epub 2024 Jun 26. Proc Natl Acad Sci U S A. 2024. PMID: 38923988 Free PMC article.
References
-
- Carafoli E., Calcium–A universal carrier of biological signals. Delivered on 3 July 2003 at the special FEBS meeting in Brussels. FEBS J. 272, 1073–1089 (2005). - PubMed
-
- Berridge M. J., Lipp P., Bootman M. D., The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000). - PubMed
-
- Gangola P., Rosen B. P., Maintenance of intracellular calcium in Escherichia coli. J. Biol. Chem. 262, 12570–12574 (1987). - PubMed
-
- Batiza A. F., Schulz T., Masson P. H., Yeast respond to hypotonic shock with a calcium pulse. J. Biol. Chem. 271, 23357–23362 (1996). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous