Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Dec;52(12):1314-1332.
doi: 10.1038/s41588-020-00713-x. Epub 2020 Nov 23.

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

Praveen Surendran #  1   2   3   4 Elena V Feofanova #  5 Najim Lahrouchi #  6   7   8 Ioanna Ntalla #  9 Savita Karthikeyan #  1 James Cook  10 Lingyan Chen  1 Borbala Mifsud  9   11 Chen Yao  12   13 Aldi T Kraja  14 James H Cartwright  9 Jacklyn N Hellwege  15 Ayush Giri  15   16 Vinicius Tragante  17   18 Gudmar Thorleifsson  18 Dajiang J Liu  19 Bram P Prins  1 Isobel D Stewart  20 Claudia P Cabrera  9   21 James M Eales  22 Artur Akbarov  22 Paul L Auer  23 Lawrence F Bielak  24 Joshua C Bis  25 Vickie S Braithwaite  20   26   27 Jennifer A Brody  25 E Warwick Daw  14 Helen R Warren  9   21 Fotios Drenos  28   29 Sune Fallgaard Nielsen  30 Jessica D Faul  31 Eric B Fauman  32 Cristiano Fava  33   34 Teresa Ferreira  35 Christopher N Foley  1   36 Nora Franceschini  37 He Gao  38   39 Olga Giannakopoulou  9   40   41 Franco Giulianini  42 Daniel F Gudbjartsson  18   43 Xiuqing Guo  44 Sarah E Harris  45   46 Aki S Havulinna  46   47 Anna Helgadottir  18 Jennifer E Huffman  48 Shih-Jen Hwang  49   50 Stavroula Kanoni  9   51 Jukka Kontto  47 Martin G Larson  50   52 Ruifang Li-Gao  53 Jaana Lindström  47 Luca A Lotta  20 Yingchang Lu  54   55 Jian'an Luan  20 Anubha Mahajan  56   57 Giovanni Malerba  58 Nicholas G D Masca  59   60 Hao Mei  61 Cristina Menni  62 Dennis O Mook-Kanamori  53   63 David Mosen-Ansorena  38 Martina Müller-Nurasyid  64   65   66 Guillaume Paré  67 Dirk S Paul  1   2   68 Markus Perola  47   69 Alaitz Poveda  70 Rainer Rauramaa  71   72 Melissa Richard  73 Tom G Richardson  74 Nuno Sepúlveda  75   76 Xueling Sim  77   78 Albert V Smith  79   80   81 Jennifer A Smith  24   31 James R Staley  1   74 Alena Stanáková  82 Patrick Sulem  18 Sébastien Thériault  83   84 Unnur Thorsteinsdottir  18   80 Stella Trompet  85   86 Tibor V Varga  70 Digna R Velez Edwards  87 Giovanni Veronesi  88 Stefan Weiss  89   90 Sara M Willems  20 Jie Yao  44 Robin Young  1   91 Bing Yu  92 Weihua Zhang  38   39   93 Jing-Hua Zhao  1   20   68 Wei Zhao  94 Wei Zhao  24 Evangelos Evangelou  38   95 Stefanie Aeschbacher  96 Eralda Asllanaj  97   98 Stefan Blankenberg  90   99   100   101 Lori L Bonnycastle  102 Jette Bork-Jensen  103 Ivan Brandslund  104   105 Peter S Braund  59   60 Stephen Burgess  1   36   68 Kelly Cho  106   107   108 Cramer Christensen  109 John Connell  110 Renée de Mutsert  53 Anna F Dominiczak  111 Marcus Dörr  90   112 Gudny Eiriksdottir  79 Aliki-Eleni Farmaki  113   114 J Michael Gaziano  106   107   108 Niels Grarup  103 Megan L Grove  5 Göran Hallmans  115 Torben Hansen  103 Christian T Have  103 Gerardo Heiss  37 Marit E Jørgensen  116 Pekka Jousilahti  47 Eero Kajantie  47   117   118   119 Mihir Kamat  1   68 AnneMari Käräjämäki  120   121 Fredrik Karpe  57   122 Heikki A Koistinen  47   123   124 Csaba P Kovesdy  125 Kari Kuulasmaa  47 Tiina Laatikainen  47   126 Lars Lannfelt  127 I-Te Lee  128   129   130   131 Wen-Jane Lee  132   133 LifeLines Cohort StudyAllan Linneberg  134   135 Lisa W Martin  136 Marie Moitry  137 Girish Nadkarni  54 Matt J Neville  57   122 Colin N A Palmer  138 George J Papanicolaou  139 Oluf Pedersen  103 James Peters  1   3   140 Neil Poulter  141 Asif Rasheed  142 Katrine L Rasmussen  30 N William Rayner  56   57 Reedik Mägi  143 Frida Renström  70   115 Rainer Rettig  90   144 Jacques Rossouw  145 Pamela J Schreiner  146 Peter S Sever  147 Emil L Sigurdsson  148   149 Tea Skaaby  150 Yan V Sun  151 Johan Sundstrom  152 Gudmundur Thorgeirsson  18   80   153 Tõnu Esko  143   154 Elisabetta Trabetti  58 Philip S Tsao  155 Tiinamaija Tuomi  156   157   158 Stephen T Turner  159 Ioanna Tzoulaki  38   95 Ilonca Vaartjes  160   161 Anne-Claire Vergnaud  38 Cristen J Willer  162   163   164 Peter W F Wilson  165 Daniel R Witte  166   167   168 Ekaterina Yonova-Doing  1 He Zhang  162 Naheed Aliya  169 Peter Almgren  170 Philippe Amouyel  171   172   173   174 Folkert W Asselbergs  17   29   175 Michael R Barnes  9   21 Alexandra I Blakemore  28   176 Michael Boehnke  77 Michiel L Bots  160   161 Erwin P Bottinger  54 Julie E Buring  42   177 John C Chambers  38   39   93   178   179 Yii-Der Ida Chen  44 Rajiv Chowdhury  1   180 David Conen  83   181 Adolfo Correa  182 George Davey Smith  74 Rudolf A de Boer  183 Ian J Deary  45   184 George Dedoussis  113 Panos Deloukas  9   21   51   185 Emanuele Di Angelantonio  1   2   3   68   186 Paul Elliott  38   39   187   188   189 EPIC-CVDEPIC-InterActStephan B Felix  90   112 Jean Ferrières  190 Ian Ford  91 Myriam Fornage  73   92 Paul W Franks  70   191   192   193 Stephen Franks  194 Philippe Frossard  142 Giovanni Gambaro  195 Tom R Gaunt  74 Leif Groop  196   197 Vilmundur Gudnason  79   80 Tamara B Harris  198 Caroline Hayward  48 Branwen J Hennig  27   199 Karl-Heinz Herzig  200   201 Erik Ingelsson  202   203   204   205 Jaakko Tuomilehto  47   206   207   208 Marjo-Riitta Järvelin  28   38   39   209   210 J Wouter Jukema  86   211 Sharon L R Kardia  24 Frank Kee  212 Jaspal S Kooner  39   93   147   179 Charles Kooperberg  213 Lenore J Launer  198 Lars Lind  152 Ruth J F Loos  54   214 Abdulla Al Shafi Majumder  215 Markku Laakso  126 Mark I McCarthy  56   57   122   216 Olle Melander  34 Karen L Mohlke  217 Alison D Murray  218 Børge Grønne Nordestgaard  30 Marju Orho-Melander  34 Chris J Packard  219 Sandosh Padmanabhan  220 Walter Palmas  221 Ozren Polasek  222 David J Porteous  223   224 Andrew M Prentice  27   225 Michael A Province  14 Caroline L Relton  74 Kenneth Rice  226 Paul M Ridker  42   177 Olov Rolandsson  192 Frits R Rosendaal  53 Jerome I Rotter  44 Igor Rudan  227 Veikko Salomaa  47 Nilesh J Samani  59   60 Naveed Sattar  111 Wayne H-H Sheu  128   129   228   229 Blair H Smith  230 Nicole Soranzo  186   231   232 Timothy D Spector  62 John M Starr  45   233 Sylvain Sebert  210 Kent D Taylor  44 Timo A Lakka  71   72   234 Nicholas J Timpson  74 Martin D Tobin  60   235 Understanding Society Scientific GroupPim van der Harst  183   236   237 Peter van der Meer  183 Vasan S Ramachandran  50   238 Niek Verweij  239 Jarmo Virtamo  47 Uwe Völker  89   90 David R Weir  31 Eleftheria Zeggini  240   241   242 Fadi J Charchar  59   243   244 Million Veteran ProgramNicholas J Wareham  20 Claudia Langenberg  20 Maciej Tomaszewski  22   245 Adam S Butterworth  1   2   3   68   186 Mark J Caulfield  9   21 John Danesh  1   2   3   68   186   231 Todd L Edwards  15 Hilma Holm  18 Adriana M Hung  246 Cecilia M Lindgren  6   35   247 Chunyu Liu  248 Alisa K Manning  108   249 Andrew P Morris  10   247   250 Alanna C Morrison  5 Christopher J O'Donnell  251 Bruce M Psaty  25   252   253   254 Danish Saleheen  1   255   256 Kari Stefansson  18   80 Eric Boerwinkle  5   257 Daniel I Chasman  42   177 Daniel Levy  50   258 Christopher Newton-Cheh  6   7 Patricia B Munroe  259   260 Joanna M M Howson  261   262   263   264
Collaborators, Affiliations
Meta-Analysis

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

Praveen Surendran et al. Nat Genet. 2020 Dec.

Erratum in

  • Publisher Correction: Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.
    Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, Cho K, Christensen C, Connell J, Mutsert R, Dominiczak AF, Dörr M… See abstract for full author list ➔ Surendran P, et al. Nat Genet. 2021 May;53(5):762. doi: 10.1038/s41588-021-00832-z. Nat Genet. 2021. PMID: 33727701 No abstract available.

Abstract

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.

PubMed Disclaimer

Conflict of interest statement

Competing Interests

The following authors affiliated with deCODE genetics/Amgen Inc. are employed by the company: Vinicius Tragante, Gudmar Thorleifsson, Anna Helgadottir, Patrick Sulem, Gudmundur Thorgeirsson, Hilma Holm, Daniel F. Gudbjartsson, Unnur Thorsteinsdottir, Kari Stefansson. Bruce Psaty serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. John Danesh reports grants, personal fees and non-financial support from Merck Sharp & Dohme (MSD), grants, personal fees and non-financial support from Novartis, grants from Pfizer, and grants from AstraZeneca outside the submitted work. Adam Butterworth reports grants outside of this work from AstraZeneca, Biogen, Merck, Novartis, and Pfizer and personal fees from Novartis. Veikko Salomaa has participated in a conference trip sponsored by Novo Nordisk and received an honorarium for participating in an advisor board meeting, outside the present study. He also has ongoing research collaboration with Bayer Ltd, outside the present study. Dennis Mook-Kanamori is a part-time clinical research consultant for Metabolon, Inc. Mark I. McCarthy has served on advisory panels for Pfizer, Novo Nordisk, Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. As of June 2019, he is an employee of Genentech, and a holder of Roche stock. Eric B. Fauman is an employee of and owns stock in Pfizer, Inc. Mark J. Caulfield is Chief Scientist for Genomics England, a UK Government company. Joanna M. M. Howson became a full-time employee of Novo Nordisk, and I.N. became a full-time employee of Gilead during revision of the manuscript.

Figures

Extended Data Fig. 1
Extended Data Fig. 1. Power estimation for stage 2 meta-analyses
Power calculations were performed assuming that, for any given variant, there were 1,318,884 individuals for EAWAS PA analyses, 1,164,961 participants for EAWAS EA analyses, and 670,472 participants for RV-GWAS analyses. Calculations were performed in R (https://genome.sph.umich.edu/wiki/Power_Calculations:_Quantitative_Traits).
Extended Data Fig. 2
Extended Data Fig. 2. Expression of genes implicated by the rare SNVs in GTEx v7 tissues
We used FUMA GWAS to perform these analyses. We included genes closest to the identified rare variants from the EAWAS and the RV-GWAS.
Extended Data Fig. 3
Extended Data Fig. 3. Tissue enrichment of rare variant gene expression levels in GTEx v7
We used FUMA GWAS to perform these analyses. We included genes closest to the identified rare variants from the EAWAS and the RV-GWAS.
Figure 1
Figure 1. Study design for single variant discovery.
a, Exome array-wide association study (EAWAS) of SBP, DBP, PP and HTN. In Stage 1, we performed two fixed effect meta-analyses for each of the blood pressure (BP) phenotypes SBP, DBP, PP and HTN: one meta-analysis including 810,865 individuals of European (EUR) ancestry and a second pan-ancestry (PA) meta-analysis including 870,217 individuals of EUR, South Asians (SAS), East Asians (EAS), African Ancestry (AA), Hispanics (HIS) and Native Americans (NAm) (Supplementary Tables 23 and 24; Methods). Summary association statistics for SNVs with P < 5 × 10-8 in Stage 1 that were outside of previously reported BP loci (Methods, Supplementary Tables 1 and 25) were requested in independent studies (up to 448,667 participants; Supplementary Table 24). In Stage 2, we performed both a EUR and a PA meta-analyses for each trait of Stage 1 results and summary statistics from the additional studies. Only SNVs that were associated with a BP trait at P < 5 × 10-8 in the combined Stage 2 EUR or PA meta-analyses and had concordant directions of effect across studies (P heterogeneity > 1 × 10-4; Methods) were considered significant. Further details are provided in the Methods and Supplementary Information. b, Rare variant GWAS (RV-GWAS) of SBP, DBP and PP. For SNVs outside of the previously reported BP loci (Methods, Supplementary Tables 1 and 6) with P < 1 × 10-7 in Stage 1, summary association statistics were requested from MVP (up to 225,112 participants; Supplementary Table 24). In Stage 2, we performed meta-analyses of Stage 1 and MVP for SBP, DBP and PP in EUR. SNVs that were associated with a BP trait at P < 5 × 10-8 in the combined Stage 2 EUR with concordant directions of effect across UKBB and MVP (P heterogeneity >1 × 10-4; Methods) were considered significant. Justification of the significance thresholds used and further information on the statistical methods are detailed in the Methods and Supplementary Information. *Total number of participants analyzed within each study that provided single variant association summaries following the data request—EAWAS EUR: Million Veterans Program (MVP: 225,113), deCODE (127,478) and GENOA (1,505); EAWAS PA: Million Veterans Program (MVP: 225,113 EUR; 63,490 AA; 22,802 HIS; 2,695 Nam; 4,792 EAS), deCODE (127,478 participants from Iceland) and GENOA (1,505 EUR; 792 AA); RV-GWAS EUR: Million Veterans Program (MVP: 225,112 EUR).
Figure 2
Figure 2. New BP associations.
a, Fuji plot of the genome-wide significant BP-associated SNVs from the Stage 2 EAWAS and Stage 2 rare variant GWAS. The first four circles (from inside-out) and the last circle (locus annotation) summarize pleiotropic effects, while circles 5 to 8 summarize the genome-wide significant associations. Every dot or square represents a BP-associated locus, and large dots represent novel BP-associated loci, while small dots represent loci containing novel variants identified in this study, which are in linkage disequilibrium with a variant reported by Evangelou et al. and/or Giri et al.. All loci are independent of each other, but due to the scale of the plot, dots for loci in close proximity overlap. *Loci with rare variant associations. b, Venn diagram showing the overlap of the 107 new BP loci across the analyzed BP traits. c, Functional annotation from VEP of all the identified rare variants in known and novel regions. d, Plots of minor allele frequency against effect estimate on the transformed scale for the BP-associated SNVs. Blue squares are new BP-associated SNVs, black dots represent SNVs at known loci, and red dots are newly identified distinct BP-associated SNVs at known loci. Effect estimates and SEs for the novel loci are taken from the Stage 2 EUR analyses (up to 1,164,961 participants), while for the known are from the Stage 1 analyses (up to 810,865 participants). Results are from the EAWAS where available and the GWAS (up to 670,472 participants) if the known variants were not on the exome array (data from Supplementary Tables 1, 3, 7, 8, and 25 were used).
Figure 3
Figure 3. Annotation of BP loci.
a, BP associations shared with eQTL from GTEx through multi-trait colocalization analyses. Expressed gene and the colocalized SNV are provided on the y-axis. BP trait and eQTL tissues are provided on the x-axis. The color indicates whether the candidate SNV increases BP and gene expression (brown), decreases BP and gene expression (orange), or has the inverse effects on BP and gene expression (blue). b, Enrichment of BP-associated SNVs in DNase I hypersensitivity hot spots (active chromatin). The top plot is for SBP, middle is for DBP, and bottom represents PP. Height of the bar indicates the fold enrichment in the listed tissues, with error bars representing the 95% confidence intervals. The colors represent the enrichment P-value.
Figure 4
Figure 4. Phenome-wide associations of the new BP loci.
a, Modified Fuji plot of the genome-wide significant associated SNVs from the Stage 2 EAWAS and Stage 2 rare variant GWAS (novel loci only). Each dot resents a novel locus where a conditionally independent variant or a variant in LD with the conditionally independent variant has been previously associated with one or more traits unrelated to blood pressure, and each circle represents different trait category (Supplementary Table 20). Locus annotation is plotted in the outer circle, and * sign denotes loci where the conditionally independent signal maps to a gene which is different to the one closest to the sentinel variant. b, Bar chart showing the distribution of traits (x-axis) and number of distinct BP-associated variants per trait (y-axis) that the SNVs in a are associated with. c, Bar chart of the number of traits included in b (y-axis) by trait category (x-axis). The color coding for a and b is relative to c.
Figure 5
Figure 5. Causal association of BP with stroke and coronary artery disease.
Mendelian randomization analyses of the effect of blood pressure on stroke and coronary artery disease. a, Univariable analyses. b, Multivariable analyses (Methods). Analyses were performed using summary association statistics (Methods). The causal estimates are on the odds ratio (OR) scale (the square in the plot). The whiskers on the plots are the 95% confidence intervals for these ORs. Results on the standard deviation scale are provided in Supplementary Table 22. The genetic variants for the estimation of the causal effects in this plot are sets of SNVs after removing the confounding SNVs and invalid instrumental variant. OR, odds ratio (P-value from the inverse variance weighted two sample Mendelian randomization method). n, number of disease cases.

Comment in

References

    1. Forouzanfar MH, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA. 2017;317:165–182. - PubMed
    1. Newton-Cheh C, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–676. - PMC - PubMed
    1. Cho YS, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527–534. - PubMed
    1. Levy D, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–687. - PMC - PubMed
    1. Kato N, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43:531–538. - PMC - PubMed

Publication types

MeSH terms

Grants and funding