Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 23;10(1):158.
doi: 10.1186/s13613-020-00775-4.

Ventilator-associated pneumonia in patients with SARS-CoV-2-associated acute respiratory distress syndrome requiring ECMO: a retrospective cohort study

Affiliations

Ventilator-associated pneumonia in patients with SARS-CoV-2-associated acute respiratory distress syndrome requiring ECMO: a retrospective cohort study

Charles-Edouard Luyt et al. Ann Intensive Care. .

Abstract

Background: The data on incidence, clinical presentation, and outcomes of ventilator-associated pneumonia (VAP) in patients with severe coronavirus disease 2019 (COVID-19) pneumonia requiring mechanical ventilation (MV) are limited. We performed this retrospective cohort study to assess frequency, clinical characteristics, responsible pathogens, and outcomes of VAP in patients COVID-19 pneumonia requiring MV between March 12th and April 24th, 2020 (all had RT-PCR-confirmed SARS-CoV-2 infection). Patients with COVID-19-associated acute respiratory distress syndrome (ARDS) requiring ECMO were compared with an historical cohort of 45 patients with severe influenza-associated ARDS requiring ECMO admitted to the same ICU during the preceding three winter seasons.

Results: Among 50 consecutive patients with Covid-19-associated ARDS requiring ECMO included [median (IQR) age 48 (42-56) years; 72% male], 43 (86%) developed VAP [median (IQR) MV duration before the first episode, 10 (8-16) days]. VAP-causative pathogens were predominantly Enterobacteriaceae (70%), particularly inducible AmpC-cephalosporinase producers (40%), followed by Pseudomonas aeruginosa (37%). VAP recurred in 34 (79%) patients and 17 (34%) died. Most recurrences were relapses (i.e., infection with the same pathogen), with a high percentage occurring on adequate antimicrobial treatment. Estimated cumulative incidence of VAP, taking into account death and extubation as competing events, was significantly higher in Covid-19 patients than in influenza patients (p = 0.002). Despite a high P. aeruginosa-VAP rate in patients with influenza-associated ARDS (54%), the pulmonary infection recurrence rate was significantly lower than in Covid-19 patients. Overall mortality was similar for the two groups.

Conclusions: Patients with severe Covid-19-associated ARDS requiring ECMO had a very high late-onset VAP rate. Inducible AmpC-cephalosporinase-producing Enterobacteriaceae and Pseudomonas aeruginosa frequently caused VAP, with multiple recurrences and difficulties eradicating the pathogen from the lung.

Keywords: ARDS; Coronavirus; Covid-19; ECMO; Enterobacteriaceae; Ventilator-associated pneumonia.

PubMed Disclaimer

Conflict of interest statement

C.-E. L. has served as consultant for Bayer Healthcare, Carmat and Thermo Fisher Brahms, and received lecture fees from MSD, Aerogen and BioMérieux, outside the submitted work. The other authors have no conflicts of interest to declare in relationship to this manuscript.

Figures

Fig. 1
Fig. 1
Flow chart of the study. ARDS acute respiratory distress syndrome, ARF acute respiratory failure, Covid-19 coronavirus-infection disease 2019, ICU intensive care unit, MV mechanical ventilation, SARS-CoV-2 severe acute respiratory syndrome coronavirus-2, ECMO extracorporeal membrane oxygenation, VAP ventilator-associated pneumonia
Fig. 2
Fig. 2
Estimated cumulative incidence of ventilator-associated pneumonia (VAP), extubation or death in Covid-19 and influenza patients, taking into account only the first event that occurred. p values for differences between Covid-19 and influenza patients were 0.002 for VAP, 0.11 for death and 0.07 for extubation

References

    1. Papazian L, Klompas M, Luyt C-E. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med. 2020;46:888–906. doi: 10.1007/s00134-020-05980-0. - DOI - PMC - PubMed
    1. Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal co-infection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020. (in press). - PMC - PubMed
    1. Lescure F-X, Bouadma L, Nguyen D, Parisey M, Wicky P-H, Behillil S, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis. 2020;20:697–706. doi: 10.1016/S1473-3099(20)30200-0. - DOI - PMC - PubMed
    1. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19) Intensive Care Med. 2020;48:e440–e469. - PMC - PubMed
    1. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:934–943. doi: 10.1001/jamainternmed.2020.0994. - DOI - PMC - PubMed

LinkOut - more resources