Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 9;12(49):54243-54265.
doi: 10.1021/acsami.0c10796. Epub 2020 Nov 24.

From Memristive Materials to Neural Networks

Affiliations

From Memristive Materials to Neural Networks

Tao Guo et al. ACS Appl Mater Interfaces. .

Abstract

The information technologies have been increasing exponentially following Moore's law over the past decades. This has fundamentally changed the ways of work and life. However, further improving data process efficiency is facing great challenges because of physical and architectural limitations. More powerful computational methodologies are crucial to fulfill the technology gap in the post-Moore's law period. The memristor exhibits promising prospects in information storage, high-performance computing, and artificial intelligence. Since the memristor was theoretically predicted by L. O. Chua in 1971 and experimentally confirmed by HP Laboratories in 2008, it has attracted great attention from worldwide researchers. The intrinsic properties of memristors, such as simple structure, low power consumption, compatibility with the complementary metal oxide-semiconductor (CMOS) process, and dual functionalities of the data storage and computation, demonstrate great prospects in many applications. In this review, we cover the memristor-relevant computing technologies, from basic materials to in-memory computing and future prospects. First, the materials and mechanisms in the memristor are discussed. Then, we present the development of the memristor in the domains of the synapse simulating, in-memory logic computing, deep neural networks (DNNs) and spiking neural networks (SNNs). Finally, the existent technology challenges and outlook of the state-of-art applications are proposed.

Keywords: in-memory logic computing; memristive materials; neural network; neuromorphic computing; synapse.

PubMed Disclaimer

LinkOut - more resources