Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin
- PMID: 33232657
- PMCID: PMC8043720
- DOI: 10.1016/j.molcel.2020.10.039
Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin
Abstract
Voltage-gated sodium channels initiate electrical signals and are frequently targeted by deadly gating-modifier neurotoxins, including tarantula toxins, which trap the voltage sensor in its resting state. The structural basis for tarantula-toxin action remains elusive because of the difficulty of capturing the functionally relevant form of the toxin-channel complex. Here, we engineered the model sodium channel NaVAb with voltage-shifting mutations and the toxin-binding site of human NaV1.7, an attractive pain target. This mutant chimera enabled us to determine the cryoelectron microscopy (cryo-EM) structure of the channel functionally arrested by tarantula toxin. Our structure reveals a high-affinity resting-state-specific toxin-channel interaction between a key lysine residue that serves as a "stinger" and penetrates a triad of carboxyl groups in the S3-S4 linker of the voltage sensor. By unveiling this high-affinity binding mode, our studies establish a high-resolution channel-docking and resting-state locking mechanism for huwentoxin-IV and provide guidance for developing future resting-state-targeted analgesic drugs.
Keywords: NaV1.7; analgesics; cryo-EM; electrophysiology; gating-modifier toxins; huwentoxin; pain; protein structure; tarantula; voltage-gated sodium channel.
Copyright © 2020 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Interests The authors declare no competing interests.
Figures






Similar articles
-
Comprehensive engineering of the tarantula venom peptide huwentoxin-IV to inhibit the human voltage-gated sodium channel hNav1.7.J Biol Chem. 2020 Jan 31;295(5):1315-1327. doi: 10.1074/jbc.RA119.011318. Epub 2019 Dec 23. J Biol Chem. 2020. PMID: 31871053 Free PMC article.
-
Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the Chinese bird spider Ornithoctonus hainana.J Biol Chem. 2013 Jul 12;288(28):20392-403. doi: 10.1074/jbc.M112.426627. Epub 2013 May 23. J Biol Chem. 2013. PMID: 23703613 Free PMC article.
-
Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin huwentoxin-IV (μ-TRTX-Hh2a).J Biol Chem. 2013 Aug 2;288(31):22707-20. doi: 10.1074/jbc.M113.461392. Epub 2013 Jun 12. J Biol Chem. 2013. PMID: 23760503 Free PMC article.
-
Selective Targeting of Nav1.7 with Engineered Spider Venom-Based Peptides.Channels (Austin). 2021 Dec;15(1):179-193. doi: 10.1080/19336950.2020.1860382. Channels (Austin). 2021. PMID: 33427574 Free PMC article. Review.
-
A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.Neurosci Lett. 2018 Jul 13;679:35-47. doi: 10.1016/j.neulet.2018.04.030. Epub 2018 Apr 21. Neurosci Lett. 2018. PMID: 29684532 Review.
Cited by
-
Structural mapping of Nav1.7 antagonists.Nat Commun. 2023 Jun 3;14(1):3224. doi: 10.1038/s41467-023-38942-3. Nat Commun. 2023. PMID: 37270609 Free PMC article.
-
Structural basis for severe pain caused by mutations in the S4-S5 linkers of voltage-gated sodium channel NaV1.7.Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2219624120. doi: 10.1073/pnas.2219624120. Epub 2023 Mar 30. Proc Natl Acad Sci U S A. 2023. PMID: 36996107 Free PMC article.
-
Molecular mechanism of the spider toxin κ-LhTx-I acting on the bacterial voltage-gated sodium channel NaChBac.Front Pharmacol. 2022 Aug 4;13:924661. doi: 10.3389/fphar.2022.924661. eCollection 2022. Front Pharmacol. 2022. PMID: 35991876 Free PMC article.
-
Voltage-sensor gating charge interactions bimodally regulate voltage dependence and kinetics of calcium channel activation.J Gen Physiol. 2025 Sep 1;157(5):e202513769. doi: 10.1085/jgp.202513769. Epub 2025 Aug 4. J Gen Physiol. 2025. PMID: 40758065 Free PMC article.
-
The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel NaV1.8 to Enhance Activation.Front Pharmacol. 2022 Jan 14;12:789570. doi: 10.3389/fphar.2021.789570. eCollection 2021. Front Pharmacol. 2022. PMID: 35095499 Free PMC article.
References
-
- Ahuja S, Mukund S, Deng L, Khakh K, Chang E, Ho H, Shriver S, Young C, Lin S, Johnson JP Jr., et al. (2015). Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 350, aac5464. - PubMed
-
- Bezanilla F (2000). The voltage sensor in voltage-dependent ion channels. Physiol Rev 80, 555–592. - PubMed
-
- Cai T, Luo J, Meng E, Ding J, Liang S, Wang S, and Liu Z (2015). Mapping the interaction site for the tarantula toxin hainantoxin-IV (beta-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels. Peptides 68, 148–156. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources