Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2020 Nov 25;24(1):664.
doi: 10.1186/s13054-020-03397-1.

Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study

Affiliations
Observational Study

Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study

Dennis Kühn et al. Crit Care. .

Abstract

Background: Effective antimicrobial treatment is key to reduce mortality associated with bacterial sepsis in patients on intensive care units (ICUs). Dose adjustments are often necessary to account for pathophysiological changes or renal replacement therapy. Extracorporeal membrane oxygenation (ECMO) is increasingly being used for the treatment of respiratory and/or cardiac failure. However, it remains unclear whether dose adjustments are necessary to avoid subtherapeutic drug levels in septic patients on ECMO support. Here, we aimed to evaluate and comparatively assess serum concentrations of continuously applied antibiotics in intensive care patients being treated with and without ECMO.

Methods: Between October 2018 and December 2019, we prospectively enrolled patients on a pneumological ICU in southwest Germany who received antibiotic treatment with piperacillin/tazobactam, ceftazidime, meropenem, or linezolid. All antibiotics were applied using continuous infusion, and therapeutic drug monitoring of serum concentrations (expressed as mg/L) was carried out using high-performance liquid chromatography. Target concentrations were defined as fourfold above the minimal inhibitory concentration (MIC) of susceptible bacterial isolates, according to EUCAST breakpoints.

Results: The final cohort comprised 105 ICU patients, of whom 30 were treated with ECMO. ECMO patients were significantly younger (mean age: 47.7 vs. 61.2 years; p < 0.001), required renal replacement therapy more frequently (53.3% vs. 32.0%; p = 0.048) and had an elevated ICU mortality (60.0% vs. 22.7%; p < 0.001). Data on antibiotic serum concentrations derived from 112 measurements among ECMO and 186 measurements from non-ECMO patients showed significantly lower median serum concentrations for piperacillin (32.3 vs. 52.9; p = 0.029) and standard-dose meropenem (15.0 vs. 17.8; p = 0.020) in the ECMO group. We found high rates of insufficient antibiotic serum concentrations below the pre-specified MIC target among ECMO patients (piperacillin: 48% vs. 13% in non-ECMO; linezolid: 35% vs. 15% in non-ECMO), whereas no such difference was observed for ceftazidime and meropenem.

Conclusions: ECMO treatment was associated with significantly reduced serum concentrations of specific antibiotics. Future studies are needed to assess the pharmacokinetic characteristics of antibiotics in ICU patients on ECMO support.

Keywords: Antibiotics; Bacteremia; Diagnosis; Infection; Multiresistant bacteria; Sepsis; Therapeutic drug monitoring.

PubMed Disclaimer

Conflict of interest statement

S. L. Becker has received travel grants and speaker fees from Astellas Pharmaceuticals, Becton Dickinson, Novartis and Pfizer, and participated at Advisory Boards by Pfizer and Shionogi. All other authors have nothing to disclose.

Figures

Fig. 1
Fig. 1
Percentage of intensive care unit patients with and without ECMO support who did not reach pre-specified target serum concentrations (expressed in mg/L) during continuous application of selected antibiotics, southwest Germany, October 2018–December 2019

Similar articles

Cited by

References

    1. Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014;42:1749–1755. doi: 10.1097/CCM.0000000000000330. - DOI - PubMed
    1. Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180:861–866. doi: 10.1164/rccm.200812-1912OC. - DOI - PubMed
    1. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9. - DOI - PubMed
    1. Bloos F, Thomas-Rüddel D, Rüddel H, Engel C, Schwarzkopf D, Marshall JC, et al. Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: A prospective observational multi-center study. Crit Care. 2014;18:R42. doi: 10.1186/cc13755. - DOI - PMC - PubMed
    1. Vazquez-Guillamet C, Scolari M, Zilberberg MD, Shorr AF, Micek ST, Kollef M. Using the number needed to treat to assess appropriate antimicrobial therapy as a determinant of outcome in severe sepsis and septic shock. Crit Care Med. 2014;42:2342–2349. doi: 10.1097/CCM.0000000000000516. - DOI - PubMed

Publication types

MeSH terms