Biomimetic Mechanism of Action of Fluoridated Toothpaste Containing Proprietary REFIX Technology on the Remineralization and Repair of Demineralized Dental Tissues: An In Vitro Study
- PMID: 33242916
- PMCID: PMC8184280
- DOI: 10.1055/s-0040-1716781
Biomimetic Mechanism of Action of Fluoridated Toothpaste Containing Proprietary REFIX Technology on the Remineralization and Repair of Demineralized Dental Tissues: An In Vitro Study
Abstract
Objectives: This in vitro study aimed to characterize the mineral content and surface and cross-sectional morphology of enamel and dentin tissues treated with a 1450 ppm fluoride-containing toothpaste with REFIX technology.
Materials and methods: Bovine enamel blocks (n = 5) were obtained (4 × 4 × 6 mm), demineralized (artificial caries lesion), and treated (pH cycling and brushing with the toothpaste). During the pH cycling, which lasted for 7 days (demineralization and remineralization took 6 and 18 hours, respectively), the enamel was brushed for 5 minutes using an electric toothbrush before being immersed in a remineralizing solution. The dentin blocks were acid-etched for 2 minutes (0.05 M citric acid, pH 1.8) to expose the dentinal tubules (n = 5). Morphological analysis of the dentin was performed immediately and after 7 days of brushing with the dentifrice, and compared with the control group. The specimens were then cross-sectioned. The surface and cross-sectional micromorphology were assessed using scanning electron microscopy (SEM). The elemental analyses (weight%) were determined with an energy-dispersive X-ray spectroscopy (EDS).
Results: The toothpaste with REFIX technology remineralized and repaired the surface enamel effectively. The elemental analysis also demonstrated that treating the enamel with the toothpaste formed a silicon-enriched mineral layer on the enamel surface. Elemental analysis of the enamel cross-sections showed that the toothpaste induced a mineral change. The results were also consistent in the dentin, where the dentinal tubules were progressively occluded until there was complete occlusion after 7 days.
Conclusions: We prove the biomimetic mechanism of action of fluoridated toothpaste containing proprietary REFIX technology for obtaining silicon-enriched, remineralized and repaired dental tissues.
European Journal of Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Conflict of interest statement
None declared.
Figures



References
-
- Cury J A, Tenuta L M.Evidence-based recommendation on toothpaste use Braz Oral Res 201428(Spec No)1–7. - PubMed
-
- Farooq I, Moheet I A, AlShwaimi E. In vitro dentin tubule occlusion and remineralization competence of various toothpastes. Arch Oral Biol. 2015;60(09):1246–1253. - PubMed
-
- Xiao Z, Que K, Wang H et al. Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dent Mater. 2017;33(11):1217–1228. - PubMed
-
- Cardoso C deA, Lacerda B, Mangueira D F et al. Mechanisms of action of fluoridated acidic liquid dentifrices against dental caries. Arch Oral Biol. 2015;60(01):23–28. - PubMed
LinkOut - more resources
Full Text Sources