Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Oct;191(10):1684-1692.
doi: 10.1016/j.ajpath.2020.10.018. Epub 2020 Nov 24.

Challenges in the Development, Deployment, and Regulation of Artificial Intelligence in Anatomic Pathology

Affiliations
Free article
Review

Challenges in the Development, Deployment, and Regulation of Artificial Intelligence in Anatomic Pathology

Jerome Y Cheng et al. Am J Pathol. 2021 Oct.
Free article

Abstract

Significant advances in artificial intelligence (AI), deep learning, and other machine-learning approaches have been made in recent years, with applications found in almost every industry, including health care. AI is capable of completing a spectrum of mundane to complex medically oriented tasks previously performed only by boarded physicians, most recently assisting with the detection of cancers difficult to find on histopathology slides. Although computers will likely not replace pathologists any time soon, properly designed AI-based tools hold great potential for increasing workflow efficiency and diagnostic accuracy in pathology. Recent trends, such as data augmentation, crowdsourcing for generating annotated data sets, and unsupervised learning with molecular and/or clinical outcomes versus human diagnoses as a source of ground truth, are eliminating the direct role of pathologists in algorithm development. Proper integration of AI-based systems into anatomic-pathology practice will necessarily require fully digital imaging platforms, an overhaul of legacy information-technology infrastructures, modification of laboratory/pathologist workflows, appropriate reimbursement/cost-offsetting models, and ultimately, the active participation of pathologists to encourage buy-in and oversight. Regulations tailored to the nature and limitations of AI are currently in development and, when instituted, are expected to promote safe and effective use. This review addresses the challenges in AI development, deployment, and regulation to be overcome prior to its widespread adoption in anatomic pathology.

PubMed Disclaimer

Publication types

LinkOut - more resources