Low Rank Regularization: A review
- PMID: 33246711
- DOI: 10.1016/j.neunet.2020.09.021
Low Rank Regularization: A review
Abstract
Low Rank Regularization (LRR), in essence, involves introducing a low rank or approximately low rank assumption to target we aim to learn, which has achieved great success in many data analysis tasks. Over the last decade, much progress has been made in theories and applications. Nevertheless, the intersection between these two lines is rare. In order to construct a bridge between practical applications and theoretical studies, in this paper we provide a comprehensive survey for LRR. Specifically, we first review the recent advances in two issues that all LRR models are faced with: (1) rank-norm relaxation, which seeks to find a relaxation to replace the rank minimization problem; (2) model optimization, which seeks to use an efficient optimization algorithm to solve the relaxed LRR models. For the first issue, we provide a detailed summarization for various relaxation functions and conclude that the non-convex relaxations can alleviate the punishment bias problem compared with the convex relaxations. For the second issue, we summarize the representative optimization algorithms used in previous studies, and analyze their advantages and disadvantages. As the main goal of this paper is to promote the application of non-convex relaxations, we conduct extensive experiments to compare different relaxation functions. The experimental results demonstrate that the non-convex relaxations generally provide a large advantage over the convex relaxations. Such a result is inspiring for further improving the performance of existing LRR models.
Keywords: Low rank; Optimization; Regularization.
Copyright © 2020 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
