Feedback regulation of crystal growth by buffering monomer concentration
- PMID: 33247122
- PMCID: PMC7695852
- DOI: 10.1038/s41467-020-19882-8
Feedback regulation of crystal growth by buffering monomer concentration
Abstract
Crystallization is a ubiquitous means of self-assembly that can organize matter over length scales orders of magnitude larger than those of the monomer units. Yet crystallization is notoriously difficult to control because it is exquisitely sensitive to monomer concentration, which changes as monomers are depleted during growth. Living cells control crystallization using chemical reaction networks that offset depletion by synthesizing or activating monomers to regulate monomer concentration, stabilizing growth conditions even as depletion rates change, and thus reliably yielding desired products. Using DNA nanotubes as a model system, here we show that coupling a generic reversible bimolecular monomer buffering reaction to a crystallization process leads to reliable growth of large, uniformly sized crystals even when crystal growth rates change over time. Buffering could be applied broadly as a simple means to regulate and sustain batch crystallization and could facilitate the self-assembly of complex, hierarchical synthetic structures.
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Quantitative analysis of molecular-level DNA crystal growth on a 2D surface.Sci Rep. 2013;3:2115. doi: 10.1038/srep02115. Sci Rep. 2013. PMID: 23817625 Free PMC article.
-
Precrystallization solute assemblies and crystal symmetry.Faraday Discuss. 2022 Jul 14;235(0):307-321. doi: 10.1039/d1fd00080b. Faraday Discuss. 2022. PMID: 35393981
-
Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization.Nat Mater. 2007 Jun;6(6):434-9. doi: 10.1038/nmat1912. Epub 2007 May 21. Nat Mater. 2007. PMID: 17515916
-
Peptides with regular enantiomeric sequences: a wide class of modular self-assembling architectures.J Nanosci Nanotechnol. 2007 Jul;7(7):2230-8. doi: 10.1166/jnn.2007.644. J Nanosci Nanotechnol. 2007. PMID: 17663235 Review.
-
Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices.Small. 2019 Jun;15(26):e1805424. doi: 10.1002/smll.201805424. Epub 2019 Apr 10. Small. 2019. PMID: 30970182 Review.
Cited by
-
Molecular communication relays for dynamic cross-regulation of self-sorting fibrillar self-assemblies.Sci Adv. 2021 Nov 26;7(48):eabj5827. doi: 10.1126/sciadv.abj5827. Epub 2021 Nov 24. Sci Adv. 2021. PMID: 34818037 Free PMC article.
-
Kinetic-Controlled Crystallization of α-FAPbI3 Inducing Preferred Crystallographic Orientation Enhances Photovoltaic Performance.Adv Sci (Weinh). 2023 May;10(14):e2300798. doi: 10.1002/advs.202300798. Epub 2023 Mar 30. Adv Sci (Weinh). 2023. PMID: 36994651 Free PMC article.
-
Membrane Distillation-Crystallization for Sustainable Carbon Utilization and Storage.Environ Sci Technol. 2023 Oct 31;57(43):16628-16640. doi: 10.1021/acs.est.3c04450. Epub 2023 Oct 19. Environ Sci Technol. 2023. PMID: 37857373 Free PMC article.
-
Design, Mechanical Properties, and Dynamics of Synthetic DNA Filaments.Bioconjug Chem. 2023 Jan 18;34(1):37-50. doi: 10.1021/acs.bioconjchem.2c00312. Epub 2022 Sep 29. Bioconjug Chem. 2023. PMID: 36174970 Free PMC article. Review.
-
Growth Rate and Thermal Properties of DNA Origami Filaments.Nano Lett. 2022 Nov 23;22(22):8818-8826. doi: 10.1021/acs.nanolett.2c02255. Epub 2022 Nov 3. Nano Lett. 2022. PMID: 36327970 Free PMC article.
References
-
- Davey, R. & Garside, J. From Molecules to Crystallizers. (Oxford University Press, 2000).
-
- Sharma N, Ojha H, Bharadwaj A, Pathak DP, Sharma RK. Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 2015;5:53381–53403. doi: 10.1039/C5RA06778B. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources