Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Feb 25:757:143829.
doi: 10.1016/j.scitotenv.2020.143829. Epub 2020 Nov 20.

Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review

Affiliations
Meta-Analysis

Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review

Manuela S Santana et al. Sci Total Environ. .

Abstract

Fish cholinesterases (ChEs) - like acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) - are common biomarkers of environmental contamination due to their sensitivity to a variety of toxicants. To understand pesticide effects on fish ChEs mean activity and variability, we conducted a systematic review and meta-analyses. Our goal was to verify (i) if brain and muscle ChEs responded differently to pesticide exposure; (ii) how fish size and life stage (i.e., juvenile and adult) influence ChEs variability and mean activity; (iii) what type of pesticides (i.e., herbicide, insecticide, and fungicide) has the strongest effect, and if the analytical-grade compounds differ from commercial formulations; (iv) if increasing concentrations combined with prolonged exposure leads to stronger ChEs inhibition; and (v) how each class of pesticide affects these enzymes. We validated ChEs reliability as biomarkers and identified factors influencing their response. Regardless of tissue, BChE response was more variable than AChE, and no difference between their average activity was detected. The size of juvenile fish is an important factor affecting ChEs mean activity and variability, whereas pesticide had no significant effect on adult fish ChEs. Insecticides were stronger inhibitors compared to herbicides and fungicides. Analytical-grade compounds decreased ChEs mean activity to a higher degree than commercial formulations. The combined effect of concentration and time was only significant for fungicides and insecticides. Among classes, organophosphorus insecticides had the strongest effect on ChEs, followed by carbamates, organochlorines, and pyrethroids. Organophosphorus herbicides and oxazolidinones were the only herbicides to decrease ChEs mean activity significantly, and their effects were similar from those of pyrethroids and organochlorines. Additionally, our results identified research gaps, such as the small number of studies on fungicides, neonicotinoids and other relevant pesticides. These findings suggest future directions, which might help researchers identify robust cause-effect relationships between fish ChEs and pesticides.

Keywords: Acetylcholinesterase; Biomarker; Herbicides; Insecticides; Meta-analysis; Systematic review.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources