Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 1:758:143605.
doi: 10.1016/j.scitotenv.2020.143605. Epub 2020 Nov 17.

Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning

Affiliations

Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning

Cihelio Alves Amorim et al. Sci Total Environ. .

Abstract

Harmful algal blooms are among the emerging threats to freshwater biodiversity that need to be studied further in the Anthropocene. Here, we studied freshwater plankton communities in ten tropical reservoirs to record the impact of algal blooms, comprising different phytoplankton taxa, on water quality, plankton biodiversity, and ecosystem functioning. We compared water quality parameters (water transparency, mixing depth, pH, electrical conductivity, dissolved inorganic nitrogen, total dissolved phosphorus, total phosphorus, chlorophyll-a, and trophic state), plankton structure (composition and biomass), biodiversity (species richness, diversity, and evenness), and ecosystem functioning (phytoplankton:phosphorus and zooplankton:phytoplankton ratios as a metric of resource use efficiency) through univariate and multivariate analysis of variance, and generalized additive mixed models in five different bloom categories. Most of the bloom events were composed of Cyanobacteria, followed by Dinophyta and Chlorophyta. Mixed blooms were composed of Cyanobacteria plus Bacillariophyta, Chlorophyta, and/or Dinophyta, while non-bloom communities presented phytoplankton biomass below the threshold for bloom development (10 mg L-1, WHO alert level 2). Higher phytoplankton biomasses were recorded during Cyanobacteria blooms (15.87-273.82 mg L-1) followed by Dinophyta blooms (18.86-196.41 mg L-1). An intense deterioration of water quality, including higher pH, eutrophication, stratification, and lower water transparency, was verified during Cyanobacteria and mixed blooms, while Chlorophyta and Dinophyta blooms presented lower pH, eutrophication, stratification, and higher water transparency. All bloom categories significantly impacted phytoplankton and zooplankton structure, changing the composition and dominance patterns. Bloom intensity positively influenced phytoplankton resource use efficiency (R2 = 0.25; p < 0.001), while decreased zooplankton resource acquisition (R2 = 0.51; p < 0.001). Moreover, Cyanobacteria and Chlorophyta blooms negatively impacted zooplankton species richness, while Dinophyta blooms decreased phytoplankton richness. In general, Cyanobacteria blooms presented low water quality and major threats to plankton biodiversity, and ecosystem functioning. Moreover, we demonstrated that biodiversity losses decrease ecosystem functioning, with cascading effects on plankton dynamics.

Keywords: Biodiversity loss; Phytoplankton; Resource use efficiency; Species richness; Tropical reservoirs; Zooplankton.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources