The proteasome: friend and foe of mitochondrial biogenesis
- PMID: 33249599
- DOI: 10.1002/1873-3468.14010
The proteasome: friend and foe of mitochondrial biogenesis
Abstract
Most mitochondrial proteins are synthesized in the cytosol and subsequently translocated as unfolded polypeptides into mitochondria. Cytosolic chaperones maintain precursor proteins in an import-competent state. This post-translational import reaction is under surveillance of the cytosolic ubiquitin-proteasome system, which carries out several distinguishable activities. On the one hand, the proteasome degrades nonproductive protein precursors from the cytosol and nucleus, import intermediates that are stuck in mitochondrial translocases, and misfolded or damaged proteins from the outer membrane and the intermembrane space. These surveillance activities of the proteasome are essential for mitochondrial functionality, as well as cellular fitness and survival. On the other hand, the proteasome competes with mitochondria for nonimported cytosolic precursor proteins, which can compromise mitochondrial biogenesis. In order to balance the positive and negative effects of the cytosolic protein quality control system on mitochondria, mitochondrial import efficiency directly regulates the capacity of the proteasome via transcription factor Rpn4 in yeast and nuclear respiratory factor (Nrf) 1 and 2 in animal cells. In this review, we provide a thorough overview of how the proteasome regulates mitochondrial biogenesis.
Keywords: Rpn4; aging; mitochondria; mitochondria-associated degradation; mitoprotein-induced stress response; proteasome; protein degradation; protein quality control; ubiquitin.
© 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Similar articles
-
Determinants of the cytosolic turnover of mitochondrial intermembrane space proteins.BMC Biol. 2018 Jun 22;16(1):66. doi: 10.1186/s12915-018-0536-1. BMC Biol. 2018. PMID: 29929515 Free PMC article.
-
The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins.Mol Cell Biol. 2013 Jun;33(11):2136-48. doi: 10.1128/MCB.01579-12. Epub 2013 Mar 18. Mol Cell Biol. 2013. PMID: 23508107 Free PMC article.
-
Analysis of quality control pathways for the translocase of the outer mitochondrial membrane.Methods Enzymol. 2024;707:565-584. doi: 10.1016/bs.mie.2024.07.050. Epub 2024 Aug 15. Methods Enzymol. 2024. PMID: 39488391
-
The role of the proteasome in mitochondrial protein quality control.IUBMB Life. 2023 Oct;75(10):868-879. doi: 10.1002/iub.2734. Epub 2023 May 13. IUBMB Life. 2023. PMID: 37178401 Review.
-
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis.Int J Mol Sci. 2021 Dec 21;23(1):7. doi: 10.3390/ijms23010007. Int J Mol Sci. 2021. PMID: 35008433 Free PMC article. Review.
Cited by
-
Exercise-Boosted Mitochondrial Remodeling in Parkinson's Disease.Biomedicines. 2022 Dec 12;10(12):3228. doi: 10.3390/biomedicines10123228. Biomedicines. 2022. PMID: 36551984 Free PMC article. Review.
-
Limiting cap-dependent translation increases 20S proteasomal degradation and protects the proteomic integrity in autophagy-deficient skeletal muscle.Autophagy. 2025 Jun;21(6):1212-1227. doi: 10.1080/15548627.2025.2457925. Epub 2025 Feb 6. Autophagy. 2025. PMID: 39878121 Free PMC article.
-
Dynamic Metabolic and Transcriptional Responses of Proteasome-Inhibited Neurons.Antioxidants (Basel). 2023 Jan 10;12(1):164. doi: 10.3390/antiox12010164. Antioxidants (Basel). 2023. PMID: 36671027 Free PMC article.
-
Exploring paraptosis as a therapeutic approach in cancer treatment.J Biomed Sci. 2024 Nov 4;31(1):101. doi: 10.1186/s12929-024-01089-4. J Biomed Sci. 2024. PMID: 39497143 Free PMC article. Review.
-
Advances in Cardiotoxicity Induced by Altered Mitochondrial Dynamics and Mitophagy.Front Cardiovasc Med. 2021 Sep 20;8:739095. doi: 10.3389/fcvm.2021.739095. eCollection 2021. Front Cardiovasc Med. 2021. PMID: 34616789 Free PMC article. Review.
References
-
- Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G & Martin WF (2015) Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524, 427-432.
-
- Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU et al. (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353-358.
-
- Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, Takano Y, Uematsu K, Ikuta T, Ito M et al. (2020) Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519-525.
-
- Bertgen L, Muhlhaus T & Herrmann JM (2020) Clingy genes: why were genes for ribosomal proteins retained in many mitochondrial genomes? Biochim Biophys Acta Bioenerg 1861, 148275.
-
- Ott M, Amunts A & Brown A (2016) Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 85, 77-101.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases