Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 25;11(27):7086-7091.
doi: 10.1039/d0sc02551h. eCollection 2020 Jul 21.

Pnictogen-bonding catalysis: brevetoxin-type polyether cyclizations

Affiliations

Pnictogen-bonding catalysis: brevetoxin-type polyether cyclizations

Andrea Gini et al. Chem Sci. .

Abstract

Pnictogen-bond donors are attractive for use in catalysis because of deep σ holes, high multivalency, rich hypervalency, and chiral binding pockets. We here report natural product inspired epoxide-opening polyether cyclizations catalyzed by fluoroarylated Sb(v) > Sb(iii) > Bi > Sn > Ge. The distinctive characteristic found for pnictogen-bonding catalysis is the breaking of the Baldwin rules, that is selective endo cyclization into the trans-fused ladder oligomers known from the brevetoxins. Moreover, tris(3,4,5-trifluorophenyl)stibines and their hypervalent stiborane catecholates afford different anti-Baldwin stereoselectivity. Lewis (SbCl3), Brønsted (AcOH) and π acids fail to provide similar access to these forbidden rings. Like hydrogen-bonding catalysis differs from Brønsted acid catalysis, pnictogen-bonding catalysis thus emerges as the supramolecular counterpart of covalent Lewis acid catalysis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. (a) Region of interest in the periodic table. (b and c) General structure of tetrel and pnictogen-bond donors (D; DIII: trivalent; DV: pentavalent) interacting with their acceptors (A); blue circles, σ holes; red orbitals, lone pairs. (d) Pnictogen-bonding catalysis defined as a non-covalent counterpart of (e) Lewis acid catalysis (La), analogous to (f) hydrogen-bonding and (g) Brønsted acid catalysis (Ba, conjugate base: Bb). S, substrate; P, product; etc.*: ligand (L) exchange, proton release from S upon addition to La, etc.
Fig. 2
Fig. 2. Catalyst synthesis and structures (a), with MEP and crystal structures (b and c); distances in Å; *: positive MEP maxima (kcal mol–1), corresponding to σ holes. Dashed circle: inaccessible σ hole. (i) nBuLi, Et2O, –78 °C to rt, 12 h, 45%; (ii) CH2Cl2, rt, 10 min, 78%.
Fig. 3
Fig. 3. Cyclization of (a) monomers 16–19 and (b) dimers 28 with representative 1H NMR spectrum of a product mixture generated for 28 with 1. (c) NMR fingerprints for 28 cyclized with AcOH, SbCl3, 1 and 2. (d) 1H NMR spectrum and (e) crystal structure of trans,trans (AA)-33.
Fig. 4
Fig. 4. (a) Cascade cyclization of 34 and 35 with pure B and A oligomers shown as extreme products. (b) 1H NMR and (c) GC fingerprints of 34 converted with AcOH, SbCl3, 1 and 2 (c, Baldwin products: tR 6.5–6.9 min, anti-Baldwin: tR > 6.9 min, substrates: tR < 4.0 min).
Fig. 5
Fig. 5. BP86-D3/def2-TZVP optimized intermediates with (a) 19 bound to 3, (b) 35 to 1, and (c) 34 to 2, with schematic drawings, distances in Å, polyepoxide foldamers in (b) carousel-like with parallel and (c) snake-like conformation with antiparallel epoxides.

References

    1. Alkorta I., Elguero J., Frontera A. Crystals. 2020;10:180.
    2. Bamberger J., Ostler F., Garcia Mancheño O. ChemCatChem. 2019;11:5198–5211. - PMC - PubMed
    3. Sutar R. L., Huber M. S. ACS Catal. 2019;9:9622–9639.
    4. Taylor M. S. Coord. Chem. Rev. 2020;413:213270.
    5. Lim J. Y. C., Beer P. D. Chem. 2018;4:731–783.
    6. Scheiner S., Lu J. Chem.–Eur. J. 2018;24:8167–8177. - PubMed
    1. Benz S., Poblador-Bahamonde A. I., Low-Ders N., Matile S. Angew. Chem., Int. Ed. 2018;57:5408–5412. - PMC - PubMed
    1. Scilabra P., Terraneo G., Resnati G. J. Fluorine Chem. 2017;203:62–74.
    2. Scheiner S. Acc. Chem. Res. 2013;46:280–288. - PubMed
    3. Moaven S., Yu J., Vega M., Unruh D. K., Cozzolino A. F. Chem. Commun. 2018;54:8849–8852. - PubMed
    4. Leroy C., Johannson R., Bryce D. L. J. Phys. Chem. A. 2019;123:1030–1043. - PubMed
    5. Bauzá A., Mooibroek T. J., Frontera A. ChemPhysChem. 2016;17:1608–1614. - PubMed
    6. Girolami G. S. J. Chem. Educ. 2009;86:1200.
    7. Starbuck J., Norman N. C., Orpen A. G. New J. Chem. 1999;23:969–972.
    1. Bauzá A., Mooibroek T. J., Frontera A. Angew. Chem., Int. Ed. 2013;52:12317–12321. - PubMed
    2. Karim A., Schulz N., Andersson H., Nekoueishahraki B., Carlsson A.-C. C., Sarabi D., Valkonen A., Rissanen K., Gräfenstein J., Keller S., Erdelyi M. J. Am. Chem. Soc. 2018;140:17571–17579. - PubMed
    3. Grabowski S. J. Phys. Chem. Chem. Phys. 2014;16:1824–1834. - PubMed
    4. Michalczyk M., Zierkiewicz W., Wysokiński R., Scheiner S. ChemPhysChem. 2019;20:959–966. - PubMed
    5. Scheiner S. J. Phys. Chem. A. 2018;122:2550–2562. - PubMed
    6. Nakamura H., Ishihara K., Yamamoto H. J. Org. Chem. 2002;67:5124–5137. - PubMed
    7. Berger R., Duff K., Leighton J. L. J. Am. Chem. Soc. 2004;126:5686–5687. - PubMed
    8. Hrdina R., Müller C. E., Wende R. C., Lippert K. M., Benassi M., Spengler B., Schreiner P. R. J. Am. Chem. Soc. 2011;133:7624–7627. - PubMed
    1. Zhang X., Ren J., Tan S. M., Tan D., Lee R., Tan C.-H. Science. 2019;363:400–404. - PubMed
    2. Cavallo G., Metrangolo P., Milani R., Pilati T., Priimagi A., Resnati G., Terraneo G. Chem. Rev. 2016;116:2478–2601. - PMC - PubMed
    3. Zhdankin V. V., Stang P. J. Chem. Rev. 2008;108:5299–5358. - PMC - PubMed