Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Nov 26;9(12):2548.
doi: 10.3390/cells9122548.

Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart

Affiliations
Review

Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart

Betul R Erdogan et al. Cells. .

Abstract

Diabetes is a chronic, endocrine disorder that effects millions of people worldwide. Cardiovascular complications are the major cause of diabetes-related morbidity and mortality. Cardiac β1- and β2-adrenoceptor (AR) stimulation mediates positive inotropy and chronotropy, whereas β3-AR mediates negative inotropic effect. Changes in β-AR responsiveness are thought to be an important factor that contributes to the diabetic cardiac dysfunction. Diabetes related changes in β-AR expression, signaling, and β-AR mediated cardiac function have been studied by several investigators for many years. In the present review, we have screened PubMed database to obtain relevant articles on this topic. Our search has ended up with wide range of different findings about the effect of diabetes on β-AR mediated changes both in molecular and functional level. Considering these inconsistent findings, the effect of diabetes on cardiac β-AR still remains to be clarified.

Keywords: beta adrenoceptor; diabetes; heart.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Similar articles

Cited by

References

    1. WHO Diabetes 2020. [(accessed on 25 July 2020)]; Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes.
    1. Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W., Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023. - DOI - PubMed
    1. Chen R., Ovbiagele B., Feng W. Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes. Am. J. Med. Sci. 2016;351:380–386. doi: 10.1016/j.amjms.2016.01.011. - DOI - PMC - PubMed
    1. Haffner S.M., Lehto S., Ronnemaa T., Pyorala K., Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 1998;339:229–234. doi: 10.1056/NEJM199807233390404. - DOI - PubMed
    1. Rosano G.M., Vitale C., Seferovic P. Heart Failure in Patients with Diabetes Mellitus. Card. Fail. Rev. 2017;3:52–55. doi: 10.15420/cfr.2016:20:2. - DOI - PMC - PubMed

MeSH terms

Substances