Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi
- PMID: 33257574
- PMCID: PMC7768725
- DOI: 10.1073/pnas.1922539117
Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi
Abstract
With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECM sister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.
Keywords: Agaricomycetes; diversification; ectomycorrhizal fungi; gasteroid forms; megaphylogeny.
Copyright © 2020 the Author(s). Published by PNAS.
Conflict of interest statement
The authors declare no competing interest.
Figures


Similar articles
-
Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis.Evolution. 2011 May;65(5):1305-22. doi: 10.1111/j.1558-5646.2010.01214.x. Epub 2011 Jan 6. Evolution. 2011. PMID: 21166793
-
The evolution of ectomycorrhizal symbiosis in the Late Cretaceous is a key driver of explosive diversification in Agaricomycetes.New Phytol. 2024 Jan;241(1):444-460. doi: 10.1111/nph.19055. Epub 2023 Jun 9. New Phytol. 2024. PMID: 37292019
-
Timing of evolutionary innovation: scenarios of evolutionary diversification in a species-rich fungal clade, Boletales.New Phytol. 2019 Jun;222(4):1924-1935. doi: 10.1111/nph.15698. Epub 2019 Feb 27. New Phytol. 2019. PMID: 30664238
-
After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century.Mycol Res. 2007 Sep;111(Pt 9):1001-18. doi: 10.1016/j.mycres.2007.01.012. Epub 2007 Jan 26. Mycol Res. 2007. PMID: 17964768 Review.
-
Unearthing the roots of ectomycorrhizal symbioses.Nat Rev Microbiol. 2016 Dec;14(12):760-773. doi: 10.1038/nrmicro.2016.149. Epub 2016 Oct 31. Nat Rev Microbiol. 2016. PMID: 27795567 Review.
Cited by
-
Exploring the Critical Environmental Optima and Biotechnological Prospects of Fungal Fruiting Bodies.Microb Biotechnol. 2025 Aug;18(8):e70210. doi: 10.1111/1751-7915.70210. Microb Biotechnol. 2025. PMID: 40810456 Free PMC article. Review.
-
The evolutionary adaptation of wood-decay macrofungi to host gymnosperms differs from that to host angiosperms.Ecol Evol. 2024 Jul 17;14(7):e70019. doi: 10.1002/ece3.70019. eCollection 2024 Jul. Ecol Evol. 2024. PMID: 39026950 Free PMC article.
-
Fungal taxonomy: current status and research agendas for the interdisciplinary and globalisation era.Mycology. 2022 Jul 25;14(1):52-59. doi: 10.1080/21501203.2022.2103194. eCollection 2023. Mycology. 2022. PMID: 36816771 Free PMC article. Review.
-
Transcriptional response of mushrooms to artificial sun exposure.Ecol Evol. 2021 Jul 5;11(15):10538-10546. doi: 10.1002/ece3.7862. eCollection 2021 Aug. Ecol Evol. 2021. PMID: 34367595 Free PMC article.
-
Fossils improve extinction-rate estimates under state-dependent diversification models.Philos Trans R Soc Lond B Biol Sci. 2025 Feb 13;380(1919):20230313. doi: 10.1098/rstb.2023.0313. Epub 2025 Feb 20. Philos Trans R Soc Lond B Biol Sci. 2025. PMID: 39976401 Free PMC article.
References
-
- Index Fungorum. Index Fungorum Partnership; Kew R. B. G., Mycology, landcare research-NZ: Mycology and chinese academy or science: Institute of microbiology. www.indexfungorum.org. Accessed 12 December 2017.
-
- Birkebak J. M., Adamčík S., Looney B. P., Matheny P. B., Multilocus phylogenetic reconstruction of the Clavariaceae (Agaricales) reveals polyphyly of agaricoid members. Mycologia 108, 860–868 (2016). - PubMed
-
- Binder M., Larsson K.-H., Matheny P. B., Hibbett D. S., Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of agaricomycetidae dominated by corticioid forms. Mycologia 102, 865–880 (2010). - PubMed
-
- Hosaka K., et al. , Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98, 949–959 (2006). - PubMed
-
- Binder M., Hibbett D. S., Molecular systematics and biological diversification of Boletales. Mycologia 98, 971–981 (2006). - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous