Development of Transgenic Brassica Crops Against Biotic Stresses Caused by Pathogens and Arthropod Pests
- PMID: 33261092
- PMCID: PMC7761317
- DOI: 10.3390/plants9121664
Development of Transgenic Brassica Crops Against Biotic Stresses Caused by Pathogens and Arthropod Pests
Abstract
The Brassica genus includes one of the 10 most agronomically and economically important plant groups in the world. Within this group, we can find examples such as broccoli, cabbage, cauliflower, kale, Brussels sprouts, turnip or rapeseed. Their cultivation and postharvest are continually threatened by significant stresses of biotic origin, such as pathogens and pests. In recent years, numerous research groups around the world have developed transgenic lines within the Brassica genus that are capable of defending themselves effectively against these enemies. The present work compiles all the existing studies to date on this matter, focusing in a special way on those of greater relevance in recent years, the choice of the gene of interest and the mechanisms involved in improving plant defenses. Some of the main transgenic lines developed include coding genes for chitinases, glucanases or cry proteins, which show effective results against pathogens such as Alternaria brassicae, Leptosphaeria maculans or Sclerotinia sclerotiorum, or pests such as Lipaphis erysimi or Plutella xylostella.
Keywords: Brassica; Brassica napus; Bt; Plutella xylostella; Sclerotinia sclerotiorum; chitinase.
Conflict of interest statement
The authors declare no conflict of interest.
Similar articles
-
Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits.Planta. 2024 Mar 23;259(5):97. doi: 10.1007/s00425-024-04379-1. Planta. 2024. PMID: 38520529 Review.
-
Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes.J Appl Genet. 2016 Nov;57(4):417-425. doi: 10.1007/s13353-016-0340-y. Epub 2016 Feb 10. J Appl Genet. 2016. PMID: 26862081
-
Endophytic fungi from kale (Brassica oleracea var. acephala) modify roots-glucosinolate profile and promote plant growth in cultivated Brassica species. First description of Pyrenophora gallaeciana.Front Microbiol. 2022 Oct 5;13:981507. doi: 10.3389/fmicb.2022.981507. eCollection 2022. Front Microbiol. 2022. PMID: 36274741 Free PMC article.
-
Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.Biotechnol Lett. 2016 Jun;38(6):1021-32. doi: 10.1007/s10529-016-2058-7. Epub 2016 Feb 13. Biotechnol Lett. 2016. PMID: 26875090
-
Insect pathogens as biological control agents: Back to the future.J Invertebr Pathol. 2015 Nov;132:1-41. doi: 10.1016/j.jip.2015.07.009. Epub 2015 Jul 27. J Invertebr Pathol. 2015. PMID: 26225455 Review.
Cited by
-
Analyses of Lysin-motif Receptor-like Kinase (LysM-RLK) Gene Family in Allotetraploid Brassica napus L. and Its Progenitor Species: An In Silico Study.Cells. 2021 Dec 23;11(1):37. doi: 10.3390/cells11010037. Cells. 2021. PMID: 35011598 Free PMC article.
-
Optimization of Protoplast Isolation from Leaf Mesophylls of Chinese Cabbage (Brassica rapa ssp. pekinensis) and Subsequent Transfection with a Binary Vector.Plants (Basel). 2021 Nov 30;10(12):2636. doi: 10.3390/plants10122636. Plants (Basel). 2021. PMID: 34961107 Free PMC article.
-
Molecular Alchemy: Converting Stress into Resilience via Secondary Metabolites and Calcium Signaling in Rice.Rice (N Y). 2025 May 5;18(1):32. doi: 10.1186/s12284-025-00783-7. Rice (N Y). 2025. PMID: 40325258 Free PMC article. Review.
-
Trichoderma hamatum Increases Productivity, Glucosinolate Content and Antioxidant Potential of Different Leafy Brassica Vegetables.Plants (Basel). 2021 Nov 12;10(11):2449. doi: 10.3390/plants10112449. Plants (Basel). 2021. PMID: 34834812 Free PMC article.
-
Development of supercritical technology to obtain improved functional dietary fiber for the valorization of broccoli by-product.J Sci Food Agric. 2025 Mar 15;105(4):2203-2214. doi: 10.1002/jsfa.13990. Epub 2024 Nov 4. J Sci Food Agric. 2025. PMID: 39494503 Free PMC article.
References
-
- Katche E., Quezada-Martinez D., Katche E.I., Vasquez-Teuber P., Mason A.S. Interspecific hybridization for Brassica crop improvement. Crop. Breed. Genet. Genom. 2019;1:e190007.
-
- Francisco M., Tortosa M., Martínez-Ballesta M.D.C., Velasco P., García-Viguera C., Moreno D.A. Nutritional and phytochemical value of Brassica crops from the agri-food perspective. Ann. Appl. Biol. 2017;170:273–285. doi: 10.1111/aab.12318. - DOI
-
- Food and Agriculture Organization of the United Nations (FAO) FAOSTAT Database. Top Exports of “Cabbages and Other Brassicas”. [(accessed on 13 September 2020)];2018 Available online: http://www.fao.org/faostat/en/#data/QC.
-
- Eckes A.H., Gubała T., Nowakowski P., Szymczyszyn T., Wells R., Irwin J.A., Horro C., Hancock J.M., King G., Dyer S.C., et al. Introducing the Brassica information portal: Towards integrating genotypic and phenotypic Brassica crop data. F1000Research. 2017;6:465. doi: 10.12688/f1000research.11301.1. - DOI - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources