Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2020 Dec 1;17(1):60.
doi: 10.1186/s12970-020-00394-1.

Effects of daily 24-gram doses of rice or whey protein on resistance training adaptations in trained males

Affiliations
Randomized Controlled Trial

Effects of daily 24-gram doses of rice or whey protein on resistance training adaptations in trained males

Jessica M Moon et al. J Int Soc Sports Nutr. .

Abstract

Background: Large (48-g), isonitrogenous doses of rice and whey protein have previously been shown to stimulate similar adaptations to resistance training, but the impact of consuming smaller doses has yet to be compared. We evaluated the ability of 24-g doses of rice or whey protein concentrate to augment adaptations following 8 weeks of resistance training.

Methods: Healthy resistance-trained males (n = 24, 32.8 ± 6.7 years, 179.3 ± 8.5 cm, 87.4 ± 8.5 kg, 27.2 ± 1.9 kg/m2, 27.8 ± 6.0% fat) were randomly assigned and matched according to fat-free mass to consume 24-g doses of rice (n = 12, Growing Naturals, LLC) or whey (n = 12, NutraBio Labs, Inc.) protein concentrate for 8 weeks while completing a standardized resistance training program. Body composition (DXA), muscular strength (one-repetition maximum [1RM]) and endurance (repetitions to fatigue [RTF] at 80% 1RM) using bench press (BP) and leg press (LP) exercises along with anaerobic capacity (Wingate) were assessed before and after the intervention. Subjects were asked to maintain regular dietary habits and record dietary intake every 2 weeks. Outcomes were assessed using 2 × 2 mixed (group x time) factorial ANOVA with repeated measures on time and independent samples t-tests using the change scores from baseline. A p-value of 0.05 and 95% confidence intervals on the changes between groups were used to determine outcomes.

Results: No baseline differences (p > 0.05) were found for key body composition and performance outcomes. No changes (p > 0.05) in dietary status occurred within or between groups (34 ± 4 kcal/kg/day, 3.7 ± 0.77 g/kg/day, 1.31 ± 0.28 g/kg/day, 1.87 ± 0.23 g/kg/day) throughout the study for daily relative energy (34 ± 4 kcals/kg/day), carbohydrate (3.7 ± 0.77 g/kg/day), fat (1.31 ± 0.28 g/kg/day), and protein (1.87 ± 0.23 g/kg/day) intake. Significant main effects for time were revealed for body mass (p = 0.02), total body water (p = 0.01), lean mass (p = 0.008), fat-free mass (p = 0.007), BP 1RM (p = 0.02), BP volume (p = 0.04), and LP 1RM (p = 0.01). Changes between groups were similar for body mass (- 0.88, 2.03 kg, p = 0.42), fat-free mass (- 0.68, 1.99 kg, p = 0.32), lean mass (- 0.73, 1.91 kg, p = 0.37), fat mass (- 0.48, 1.02 kg, p = 0.46), and % fat (- 0.63, 0.71%, p = 0.90). No significant between group differences were seen for BP 1RM (- 13.8, 7.1 kg, p = 0.51), LP 1RM (- 38.8, 49.6 kg, p = 0.80), BP RTF (- 2.02, 0.35 reps, p = 0.16), LP RTF (- 1.7, 3.3 reps, p = 0.50), and Wingate peak power (- 72.5, 53.4 watts, p = 0.76) following the eight-week supplementation period.

Conclusions: Eight weeks of daily isonitrogenous 24-g doses of rice or whey protein in combination with an eight-week resistance training program led to similar changes in body composition and performance outcomes. Retroactively registered on as NCT04411173 .

Keywords: Body composition; Efficacy; Endurance; Fat-free mass; Performance; Plant proteins; Protein isolates; Protein source; Rice; Strength; Supplementation; Whey.

PubMed Disclaimer

Conflict of interest statement

RJ is an inventor of patent WO2014138305 (US 9,820,504) and has not been involved in the data collection and analysis or writing the manuscript. All other authors declare no competing interests. All other authors declare no conflicts of interest.

Figures

Fig. 1
Fig. 1
Research Design Overview
Fig. 2
Fig. 2
CONSORT diagram
Fig. 3
Fig. 3
(Sub-Panel a & b): DXA fat-free mass (in kilograms) in rice and whey protein supplemented groups. Panel a: Raw data (Rice = 0.05 ± 4.8% change; Whey = 1.5 ± 4.5% change); Panel b: Individual response data. All data is presented as means ± SD. * = Different from within-group week 0 value
Fig. 4
Fig. 4
(Sub-Panel a & b): Bench-press one-repetition maximum (1RM) in rice and whey protein supplemented groups. Panel a: Raw data (Rice = 3.9 ± 4.9% change; Whey = 2.4 ± 5.0% change); Panel b: Individual response data. All data is presented as means ± SD. * = Different from within-group week 0 value

Similar articles

Cited by

References

    1. Trumbo P, Schlicker S, Yates AA, Poos M. Food, and nutrition Board of the Institute of medicine TNA. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–1630. doi: 10.1016/S0002-8223(02)90346-9. - DOI - PubMed
    1. Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of Canada, and the american college of sports medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–528. doi: 10.1016/j.jand.2015.12.006. - DOI - PubMed
    1. Jager R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J. International society of sports nutrition position stand: Protein and exercise. J Int Soc Sports Nutr. 2017;14:20. doi: 10.1186/s12970-017-0177-8. - DOI - PMC - PubMed
    1. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Phys. 1995;268(3 Pt 1):E514–E520. - PubMed
    1. Trommelen J, Betz MW, Van Loon LJC. The muscle protein synthetic response to meal ingestion following resistance-type exercise. Sports Med. 2019;49(2):185–197. doi: 10.1007/s40279-019-01053-5. - DOI - PubMed

Publication types

MeSH terms

Associated data