Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec;8(12):1465-1469.
doi: 10.1158/2326-6066.CIR-20-0526.

Personal Neoantigen Cancer Vaccines: A Road Not Fully Paved

Affiliations
Review

Personal Neoantigen Cancer Vaccines: A Road Not Fully Paved

Edward F Fritsch et al. Cancer Immunol Res. 2020 Dec.

Abstract

Personal neoantigen-based cancer vaccines are designed to target antigens arising from tumor-specific mutations within individual cancers and present a tremendous opportunity to capitalize on their favorable and intrinsic properties of escape from central tolerance and exquisite tumor specificity. With the endpoint of creating an optimal T-cell army to attack a tumor, neoantigen-based vaccines have demonstrated the ability to coax naïve T-cell recruits against epitopes that do not induce spontaneous immunity to raise long-lasting T-cell responses against multiple tumor-specific epitopes and subsequently to extend the breadth of responses, as immunity begets immunity via epitope spreading. Importantly, on both preclinical and clinical fronts, the association of T-cell responses to neoantigens and favorable outcomes has been demonstrated time and time again. We recognize, however, that the path forward remains long and winding and requires the field to address several key challenges, particularly overcoming evolved tumor escape mechanisms and optimizing vaccine-induced immunity. Some challenges stem from gaps in science that enable in silico prediction of antigen presentation and recognition by T-cell receptors, whereas others stem from the logistical obstacles and cost of personalization. Nevertheless, with perseverance and innovative solutions, we have little doubt that the ability of neoantigen vaccination to induce potent cancer-specific T cells will fundamentally succeed in enabling greater effectiveness of a broad array of immunotherapies. We provide our perspective on the progress and the remaining challenges to realizing the opportunity of personal neoantigen cancer vaccines.

PubMed Disclaimer

Conflict of interest statement

Disclosure of Potential Conflicts of Interest

E.F.F is an equity holder and consultant for BioNTech, and equity holder and SAB member of BioEntre. U.E.B., N.H. and C.J.W. are equity holders of BioNTech. U.E.B is an equity holder in BioEntre. N.H. is a consultant for Related Sciences. Patent applications have been filed on aspects of the described work entitled as follows: ‘Compositions and methods for personalized neoplasia vaccines’ (N.H., E.F.F. and C.J.W.), ‘Methods for identifying tumour specific neo-antigens’ (N.H. and C.J.W.), ‘Formulations for neoplasia vaccines’ (E.F.F.) and ‘Combination therapy for neoantigen vaccine’ (N.H., C.J.W. and E.F.F.).

Figures

Figure 1.
Figure 1.. Plotting the progress and the need.
A volcano plot is used to figuratively show the areas where the development of personal neoantigen cancer vaccines has progressed (“Improvements”) and areas where more research and breakthroughs are needed (“Needed improvements”). Significance increases from bottom to top of the y-axis. TME: tumor microenvironment; TILs: tumor-infiltrating lymphocytes.

References

    1. Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol Res. 2013;1:11–5. - PMC - PubMed
    1. Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6. - PubMed
    1. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–21. - PMC - PubMed
    1. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348:803–8. - PMC - PubMed
    1. Kenter GG, Welters MJP, Valentijn ARPM, Lowik MJG, Berends-van der Meer DMA, Vloon APG, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361:1838–47. - PubMed

Publication types