Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 5:403:123870.
doi: 10.1016/j.jhazmat.2020.123870. Epub 2020 Sep 12.

Promotion effects of halloysite nanotubes on catalytic activity of Co3O4 nanoparticles toward reduction of 4-nitrophenol and organic dyes

Affiliations

Promotion effects of halloysite nanotubes on catalytic activity of Co3O4 nanoparticles toward reduction of 4-nitrophenol and organic dyes

Min Zhang et al. J Hazard Mater. .

Abstract

Nanosized clay minerals have been widely used as efficient supports to immobilize catalyst nanoparticles. However, clay support-induced interactions and their influences on the catalyst structure and performance currently have not been fully understood. Here, Co3O4 nanoparticles supported on halloysite nanotubes (HNTs) were synthesized by a facile deposition-precipitation approach followed by thermal treatment. A series of characterization methods were employed for the Co3O4/HNTs hybrid nanostructure to identify its crystal phase, chemical composition, morphology, specific surface area, surface chemical states, and redox property. Characterization results showed that HNTs not only impacted the particle size of Co3O4 nanoparticles, but also modified surface chemical surface states of the later, which ultimately promoted the effective catalytic reduction of 4-nitrophenol (4-NP) and azo dyes with sodium borohydride. The interaction between HNTs and Co3O4 nanoparticles was found to shorten the induction period of the 4-NP reduction. Meanwhile, the Co3O4/HNTs catalyst for the 4-NP reduction achieved an apparent rate constant of 0.265 min-1 and an activity parameter of 1.63 × 104 min-1 g-1 as well as a turnover frequency of 4.37 min-1. In addition, Co3O4/HNTs showed an improvement in reduction efficiency of the azo dyes when compared to bare Co3O4 nanoparticles.

Keywords: Catalytic hydrogenation; Co(3)O(4); Halloysite; Hybrid nanostructure; Non-aqueous deposition-precipitation.

PubMed Disclaimer

LinkOut - more resources