Information Geometry of κ-Exponential Families: Dually-Flat, Hessian and Legendre Structures
- PMID: 33265526
- PMCID: PMC7512955
- DOI: 10.3390/e20060436
Information Geometry of κ-Exponential Families: Dually-Flat, Hessian and Legendre Structures
Abstract
In this paper, we present a review of recent developments on the κ -deformed statistical mechanics in the framework of the information geometry. Three different geometric structures are introduced in the κ -formalism which are obtained starting from three, not equivalent, divergence functions, corresponding to the κ -deformed version of Kullback-Leibler, "Kerridge" and Brègman divergences. The first statistical manifold derived from the κ -Kullback-Leibler divergence form an invariant geometry with a positive curvature that vanishes in the κ → 0 limit. The other two statistical manifolds are related to each other by means of a scaling transform and are both dually-flat. They have a dualistic Hessian structure endowed by a deformed Fisher metric and an affine connection that are consistent with a statistical scalar product based on the κ -escort expectation. These flat geometries admit dual potentials corresponding to the thermodynamic Massieu and entropy functions that induce a Legendre structure of κ -thermodynamics in the picture of the information geometry.
Keywords: Hessian geometry; Legendre structure; divergence functions; dually-flat geometry; information geometry; κ-generalized statistical mechanics.
Conflict of interest statement
The authors declare no conflict of interest.
Similar articles
-
λ-Deformation: A Canonical Framework for Statistical Manifolds of Constant Curvature.Entropy (Basel). 2022 Jan 27;24(2):193. doi: 10.3390/e24020193. Entropy (Basel). 2022. PMID: 35205488 Free PMC article. Review.
-
On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds.Entropy (Basel). 2020 Jun 28;22(7):713. doi: 10.3390/e22070713. Entropy (Basel). 2020. PMID: 33286486 Free PMC article.
-
An Elementary Introduction to Information Geometry.Entropy (Basel). 2020 Sep 29;22(10):1100. doi: 10.3390/e22101100. Entropy (Basel). 2020. PMID: 33286868 Free PMC article. Review.
-
Divergences Induced by the Cumulant and Partition Functions of Exponential Families and Their Deformations Induced by Comparative Convexity.Entropy (Basel). 2024 Feb 23;26(3):193. doi: 10.3390/e26030193. Entropy (Basel). 2024. PMID: 38539705 Free PMC article.
-
Conformal Flattening for Deformed Information Geometries on the Probability Simplex †.Entropy (Basel). 2018 Mar 10;20(3):186. doi: 10.3390/e20030186. Entropy (Basel). 2018. PMID: 33265277 Free PMC article.
Cited by
-
Multi-Additivity in Kaniadakis Entropy.Entropy (Basel). 2024 Jan 17;26(1):77. doi: 10.3390/e26010077. Entropy (Basel). 2024. PMID: 38248202 Free PMC article.
-
The κ-Deformed Calogero-Leyvraz Lagrangians and Applications to Integrable Dynamical Systems.Entropy (Basel). 2022 Nov 17;24(11):1673. doi: 10.3390/e24111673. Entropy (Basel). 2022. PMID: 36421528 Free PMC article.
-
Extended Divergence on a Foliation by Deformed Probability Simplexes.Entropy (Basel). 2022 Nov 28;24(12):1736. doi: 10.3390/e24121736. Entropy (Basel). 2022. PMID: 36554141 Free PMC article.
-
Geometric Structures Induced by Deformations of the Legendre Transform.Entropy (Basel). 2023 Apr 18;25(4):678. doi: 10.3390/e25040678. Entropy (Basel). 2023. PMID: 37190466 Free PMC article.
-
Curvature Invariants of Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant ϕ-Sectional Curvature.Entropy (Basel). 2018 Jul 14;20(7):529. doi: 10.3390/e20070529. Entropy (Basel). 2018. PMID: 33265618 Free PMC article.
References
-
- Amari S.-I., Nagaoka H. Methods of Information Geometry. American Mathematical Society; Providence, RI, USA: 2000.
-
- Amari S.-I. Information Geometry and Its Applications. Springer; Tokyo, Japan: 2016.
-
- Gibbs J.W. A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces. Trans. Conn. Acad. 1873;II:382–404.
-
- Charathéodory C. Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 1909;67:355–386. doi: 10.1007/BF01450409. (In German) - DOI
-
- Ruppeiner G. Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 1995;67:605–659. doi: 10.1103/RevModPhys.67.605. - DOI
Publication types
LinkOut - more resources
Full Text Sources