Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;51(5):685-695.
doi: 10.1111/cea.13801. Epub 2020 Dec 20.

MRGPRX2 activation in mast cells by neuromuscular blocking agents and other agonists: Modulation by sugammadex

Affiliations

MRGPRX2 activation in mast cells by neuromuscular blocking agents and other agonists: Modulation by sugammadex

Nithya A Fernandopulle et al. Clin Exp Allergy. 2021 May.

Abstract

Background: Neuromuscular-blocking agents (NMBAs) can cause both IgE-dependent and IgE-independent anaphylactic reactions, with activation of the mast cell receptor MRGPRX2 being important to the latter. Sugammadex, a reversal agent for certain aminosteroid NMBAs, has been proposed as an antidote for these anaphylactic events with conflicting outcomes.

Objective: We further characterize the involvement of MRGPRX2 in NMBA-induced mast cell activation and determine how this is influenced by sugammadex. We then apply these in vitro results to infer the possible utility of sugammadex in the acute management of non-IgE-dependent anaphylaxis.

Methods: The LAD2 human mast cell line and a MRGPRX2 knock-down derivative were used to validate the involvement of MRGPRX2 and to test the effect of sugammadex on mast cell activation by NMBAs and other MRGPRX2 agonists.

Results: All MRGPRX2 agonists tested were shown to induce MRGPRX2-dependent LAD2 mast cell calcium mobilization and cytokine release and all, apart from rocuronium, induced degranulation. Co-treatment of mast cells with sugammadex and some MRGPRX2 agonists significantly reduced cell activation, but if sugammadex was administered a few minutes following stimulation, degranulation was not attenuated. However, addition of sugammadex up to 180 min following LAD2 MRGPRX2 stimulation, significantly reduced CCL2 mRNA and protein induction.

Conclusions and clinical relevance: We show that sugammadex, known to reverse muscle blockade by certain NMBAs, is also able to reduce MRGPRX2 activation by NMBAs and other, but not all, MRGPRX2 agonists. As sugammadex was ineffective in attenuating mast cell degranulation when added rapidly post MRGPRX2 activation, this suggests against the agent having efficacy in controlling acute symptoms of anaphylaxis to NMBAs caused by MRGPRX2 activation. Interestingly, however, sugammadex did impair MRGPRX2-induced CCL2 release, suggesting that it may have some benefit in perhaps dampening less well-defined adverse effects of MRGPRX2-dependent anaphylaxis associated with the more slowly elaborated mast cell mediators.

Keywords: IgE-independent drug reactions; MRGPRX2; anaphylactoid; anaphylaxis; drug hypersensitivity; mast cells; sugammadex.

PubMed Disclaimer

Comment in

References

REFERENCES

    1. Liew WK, Williamson E, Tang MLK. Food, drug, insect sting allergy, and anaphylaxis: Anaphylaxis fatalities and admissions in Australia. J Allergy Clin Immunol. 2009;123(2):434-442.
    1. Mertes PM, Laxenaire MC. Allergic reactions occurring during anaesthesia. Eur J Anaesthesiol. 2002;19(4):240-262.
    1. Mertes PM, Laxenaire MC, Alla F. Anaphylactic and anaphylactoid reactions occurring during anesthesia in France in 1999-2000. Anesthesiology. 2003;99(3):536-545.
    1. Cook TM, Harper N, Farmer L, et al. Anaesthesia, surgery, and life-threatening allergic reactions: protocol and methods of the 6th National Audit Project (NAP6) of the Royal College of Anaesthetists. Br J Anaesth. 2018;121(1):124-132.
    1. Metcalfe DD, Peavy RD, Gilfillan AM. Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol. 2009;124(4):639-646.

Publication types

MeSH terms