Distinguishing the neural mechanism of attentional control and working memory in feature-based attentive tracking
- PMID: 33278041
- DOI: 10.1111/psyp.13726
Distinguishing the neural mechanism of attentional control and working memory in feature-based attentive tracking
Abstract
Surface features are an important component in attentive tracking. However, the neural mechanisms underlying how features affect attentive tracking remain unknown. The present fMRI study addressed this issue by manipulating the intragroup feature complexity and intergroup feature similarity. In particular, this study distinguished the different neural mechanisms of intragroup feature complexity and intergroup feature similarity by investigating the roles of attentional control and working memory in dynamic feature-based attentive tracking. Behavioral and neuroimaging evidence showed that when targets are distinct from distractors, the intragroup feature complexity of the targets, rather than that of the distractors, mainly increases the visual working memory load and significantly activates the frontoparietal cortical circuit. Thus, the involvement of working memory in feature-based attentive tracking is modulated by goal-directed attention control. In addition, when targets are similar to distractors, the intergroup feature similarity (i.e., target-distractor similarity) mainly affects the allocation of attention. Specifically, target-distractor similarity affects the goal-directed attention toward the targets in a stimulus-driven way and induces an interaction between the ventral and dorsal attention networks.
Keywords: attentional control; fMRI; feature complexity; functional connectivity; multiple object tracking; target-distractor similarity; working memory.
© 2020 Society for Psychophysiological Research.
References
REFERENCES
-
- Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x
-
- Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13), 11-14. https://doi.org/10.1167/7.13.14
-
- Anderson, B. A., & Folk, C. L. (2010). Variations in the magnitude of attentional capture: Testing a two-process model. Attention, Perception, & Psychophysics, 72(2), 342-352. https://doi.org/10.3758/APP.72.2.342
-
- Ansorge, U., & Heumann, M. (2003). Top-down contingencies in peripheral cuing: The roles of color and location. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 937-948. https://doi.org/10.1037/0096-1523.29.5.937
-
- Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13(4), 507-512. https://doi.org/10.1038/nn.2509
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources