Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2021 May;73(5):2063-2066.
doi: 10.1002/hep.31660. Epub 2021 Apr 19.

Microbiome Biomarkers: One Step Closer in NAFLD Cirrhosis

Affiliations
Comment

Microbiome Biomarkers: One Step Closer in NAFLD Cirrhosis

Tracey G Simon et al. Hepatology. 2021 May.
No abstract available

PubMed Disclaimer

Comment on

  • A Universal Gut-Microbiome-Derived Signature Predicts Cirrhosis.
    Oh TG, Kim SM, Caussy C, Fu T, Guo J, Bassirian S, Singh S, Madamba EV, Bettencourt R, Richards L, Yu RT, Atkins AR, Huan T, Brenner DA, Sirlin CB, Downes M, Evans RM, Loomba R. Oh TG, et al. Cell Metab. 2020 Nov 3;32(5):878-888.e6. doi: 10.1016/j.cmet.2020.06.005. Epub 2020 Jun 30. Cell Metab. 2020. PMID: 32610095 Free PMC article.

References

    1. Boursier J, Diehl AM. Nonalcoholic fatty liver disease and the gut microbiome. Clin Liver Dis 2016;20:263-275. https://doi.org/10.1016/j.cld.2015.10.012.
    1. Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017;25:1054-1062.e5. https://doi.org/10.1016/j.cmet.2017.04.001.
    1. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun 2017;8:1784. https://doi.org/10.1038/s41467-017-01973-8.
    1. Oh TG, Kim SM, Caussy C, Fu T, Guo J, Bassirian S, et al. A universal gut-microbiome-derived signature predicts cirrhosis. Cell Metab 2020;32:878-888.e6. https://doi.org/10.1016/j.cmet.2020.06.005.
    1. Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine Learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol 2016;12:e1004977. https://doi.org/10.1371/journal.pcbi.1004977.

Publication types

LinkOut - more resources