Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan;33(3):e2006532.
doi: 10.1002/adma.202006532. Epub 2020 Dec 6.

Activatable NIR-II Plasmonic Nanotheranostics for Efficient Photoacoustic Imaging and Photothermal Cancer Therapy

Affiliations

Activatable NIR-II Plasmonic Nanotheranostics for Efficient Photoacoustic Imaging and Photothermal Cancer Therapy

Chunyu Zhou et al. Adv Mater. 2021 Jan.

Abstract

Precise manipulation of optical properties through the structure-evolution of plasmonic nanoparticles is of great interest in biomedical fields including bioimaging and phototherapy. However, previous success has been limited to fixed assembled structures or visible-NIR-I absorption. Here, an activatable NIR-II plasmonic theranostics system based on silica-encapsulated self-assembled gold nanochains (AuNCs@SiO2 ) for accurate tumor diagnosis and effective treatment is reported. This transformable chain structure breaks through the traditional molecular imaging window, whose absorption can be redshifted from the visible to the NIR-II region owing to the fusion between adjacent gold nanoparticles in the restricted local space of AuNCs@SiO2 triggered by the high H2 O2 level in the tumor microenvironment (TME), leading to the generation of a new string-like structure with strong NIR-II absorption, which is further confirmed by finite-difference-time-domain (FDTD) simulation. With the TME-activated characteristics, AuNCs@SiO2 exhibits excellent properties for photoacoustic imaging and a high photothermal conversion efficiency of 82.2% at 1064 nm leading to severe cell death and remarkable tumor growth inhibition in vivo. These prominent intelligent TME-responsive features of AuNCs@SiO2 may open up a new avenue to explore optical regulated nano-platform for intelligent, accurate, and noninvasive theranostics in NIR-II window.

Keywords: NIR-II window; cancer therapy; photoacoustic imaging; photothermal therapy; theranostics.

PubMed Disclaimer

References

    1. C. Chu, E. Ren, Y. Zhang, J. Yu, H. Lin, X. Pang, Y. Zhang, H. Liu, Z. Qin, Y. Cheng, X. Wang, W. Li, X. Kong, X. Chen, G. Liu, Angew. Chem., Int. Ed. 2019, 58, 269.
    1. P. Zhang, J. Wang, H. Chen, L. Zhao, B. Chen, C. Chu, H. Liu, Z. Qin, J. Liu, Y. Tan, J. Am. Chem. Soc. 2018, 140, 14980.
    1. J. Zhu, C. Chu, D. Li, X. Pang, H. Zheng, J. Wang, Y. Shi, Y. Zhang, Y. Cheng, E. Ren, J. Cheng, X. Chen, G. Liu, Adv. Funct. Mater. 2019, 29, 1904056.
    1. L. Xie, X. Pang, X. Yan, Q. Dai, H. Lin, J. Ye, Y. Cheng, Q. Zhao, X. Ma, X. Zhang, G. Liu, X. Chen, ACS Nano 2020, 14, 2880.
    1. H. Chen, Y. Qiu, D. Ding, H. Lin, W. Sun, G. Wang, W. Huang, W. Zhang, D. Lee, G. Liu, J. Xie, X. Chen, Adv. Mater. 2018, 30, 1802748.

LinkOut - more resources