Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021:2231:261-295.
doi: 10.1007/978-1-0716-1036-7_16.

NCBI Genome Workbench: Desktop Software for Comparative Genomics, Visualization, and GenBank Data Submission

Affiliations

NCBI Genome Workbench: Desktop Software for Comparative Genomics, Visualization, and GenBank Data Submission

Anatoliy Kuznetsov et al. Methods Mol Biol. 2021.

Abstract

The book chapter introduces the National Center for Biotechnology Information (NCBI) Genome Workbench, a desktop GUI software package to manipulate and visualize complex molecular biology models provided in many data formats. Genome Workbench integrates graphical views and computational tools in a single package to facilitate discoveries. In this chapter we provide a step-by-step protocol guidance on how to do comparative analysis of sequences using NCBI BLAST and multiple sequence alignment algorithms, build phylogenetic trees, and use graphical views for sequences, alignments, and trees to validate the findings. The software package can be used to prepare high-quality whole genome submissions to NCBI. The software package is user-friendly and includes validation and editing tools to fix errors as part of preparing the submission.

Keywords: Alignment; Analysis; BLAST; Bioinformatics; Clustal; GenBank; Genome; MAFFT; MUSCLE; Phylogenetic; PubMed; Visualization.

PubMed Disclaimer

References

    1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389 - DOI - PubMed - PMC
    1. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421 - DOI - PubMed - PMC
    1. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340 - DOI - PubMed - PMC
    1. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75 - DOI - PubMed - PMC
    1. Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I (2019) GenBank. Nucleic Acids Res 47(D1):D94–D99. https://doi.org/10.1093/nar/gky989 - DOI - PubMed

Publication types

LinkOut - more resources