Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 Dec;35(12):1123-1138.
doi: 10.1007/s10654-020-00698-1. Epub 2020 Dec 8.

Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications

Affiliations
Meta-Analysis

Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications

Andrew T Levin et al. Eur J Epidemiol. 2020 Dec.

Abstract

Determine age-specific infection fatality rates for COVID-19 to inform public health policies and communications that help protect vulnerable age groups. Studies of COVID-19 prevalence were collected by conducting an online search of published articles, preprints, and government reports that were publicly disseminated prior to 18 September 2020. The systematic review encompassed 113 studies, of which 27 studies (covering 34 geographical locations) satisfied the inclusion criteria and were included in the meta-analysis. Age-specific IFRs were computed using the prevalence data in conjunction with reported fatalities 4 weeks after the midpoint date of the study, reflecting typical lags in fatalities and reporting. Meta-regression procedures in Stata were used to analyze the infection fatality rate (IFR) by age. Our analysis finds a exponential relationship between age and IFR for COVID-19. The estimated age-specific IFR is very low for children and younger adults (e.g., 0.002% at age 10 and 0.01% at age 25) but increases progressively to 0.4% at age 55, 1.4% at age 65, 4.6% at age 75, and 15% at age 85. Moreover, our results indicate that about 90% of the variation in population IFR across geographical locations reflects differences in the age composition of the population and the extent to which relatively vulnerable age groups were exposed to the virus. These results indicate that COVID-19 is hazardous not only for the elderly but also for middle-aged adults, for whom the infection fatality rate is two orders of magnitude greater than the annualized risk of a fatal automobile accident and far more dangerous than seasonal influenza. Moreover, the overall IFR for COVID-19 should not be viewed as a fixed parameter but as intrinsically linked to the age-specific pattern of infections. Consequently, public health measures to mitigate infections in older adults could substantially decrease total deaths.

Keywords: COVID-19; Infection-fatality rate; Infection-fatality ratio; Meta-regression; SARS-CoV-2; Systematic review.

PubMed Disclaimer

Conflict of interest statement

The authors have no financial interests nor any other conflicts of interest related to this study.

Figures

Fig. 1
Fig. 1
Time lags in the incidence and reporting of COVID-19 fatalities. Note: This figure illustrates time lags in the incidence and reporting of COVID-19 fatalities using the results of a simulation calibrated to reflect the estimated distribution for time lags between symptom onset, death, and inclusion in official fatality reports [38]. As indicated by the vertical green line, this simulation assumes that the seroprevalence study was conducted two weeks after the pandemic was curtailed. The histogram shows the frequency of deaths and reported fatalities associated with the infections that occurred on the last day prior to full containment. As indicated by the orange vertical line, 95% of cumulative fatalities are reported within about 4 weeks after the midpoint date of the seroprevalence study
Fig. 2
Fig. 2
Study selection (PRISMA flow diagram)
Fig. 3
Fig. 3
The log-linear relationship between IFR and age. Note: Our metaregression indicates that the infection fatality rate (IFR) increases exponentially with age, and hence this figure uses a base-10 logarithmic scale so that the relationship is evident across all ages from 5 to 95 years. Each marker denotes a specific metaregression observation, that is, the IFR for a particular age group in a particular location. The marker style reflects the type of observation: circles for observations from seroprevalence studies of representative samples, diamonds for seroprevalence studies of convenience samples, and squares for countries with comprehensive tracing programs. The red line denotes the metaregression estimate of IFR as a function of age, the shaded region depicts the 95% confidence interval for that estimate. The dashed lines denote the prediction interval (which includes random variations across studies and age groups), and almost all of the 108 metaregression observations lie within that interval.
Fig. 4
Fig. 4
Benchmark analysis of the link between age and IFR. Note: This figure depicts the relationship between the infection fatality rate (IFR) and age, where IFR is shown in percentage terms. Each marker denotes a specific metaregression observation, that is, the IFR for a particular age group in a particular location. The marker style reflects the type of observation: circles for observations from seroprevalence studies of representative samples, diamonds for seroprevalence studies of convenience samples, and squares for countries with comprehensive tracing programs. The red line denotes the metaregression estimate of IFR as a function of age, the shaded region depicts the 95% confidence interval for that estimate. The dashed lines denote the prediction interval (which includes random variations across studies and age groups); almost all of the 104 metaregression observations lie within that interval
Fig. 5
Fig. 5
Forest plot of metaregression data
Fig. 5
Fig. 5
Forest plot of metaregression data
Fig. 6
Fig. 6
Variations in population IFR across geographical locations. Note: This figure depicts the extent to which the metaregression results account for variations in population IFR across geographical locations. The blue circles denote seroprevalence studies of representative samples, and the green diamonds denote countries with comprehensive tracing programs. For each observation, its position on the horizontal axis denotes its predicted IFR obtained by aggregating across the age-specific predictions of the metaregression, and its position on the vertical axis denotes the actual population IFR for that location. The dashed segments denote the estimated line obtained by fitting a regression to these 16 observations. The R2 of this regression is 0.87, indicating that nearly 90% of the variation in population IFR can be explained by variations in age composition and age-specific prevalence of COVID-19

References

    1. Khalili M, Karamouzian M, Nasiri N, Javadi S, Mirzazadeh A, Sharifi H. Epidemiological characteristics of COVID-19: a systematic review and meta-analysis. Epidemiol Infect. 2020;148:e130. doi: 10.1017/S0950268820001430. - DOI - PMC - PubMed
    1. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med. 2020 doi: 10.7326/M20-3012. - DOI - PMC - PubMed
    1. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2) Science. 2020;368(6490):489. doi: 10.1126/science.abb3221. - DOI - PMC - PubMed
    1. Li H, Wang S, Zhong F, et al. Age-dependent risks of incidence and mortality of COVID-19 in Hubei Province and other parts of China. Front Med (Lausanne) 2020;7:190. doi: 10.3389/fmed.2020.00190. - DOI - PMC - PubMed
    1. Dudel C, Riffe T, Acosta E, van Raalte A, Strozza C, Myrskylä M. Monitoring trends and differences in COVID-19 case-fatality rates using decomposition methods: Contributions of age structure and age-specific fatality. PLoS ONE. 2020;15(9):e0238904. doi: 10.1371/journal.pone.0238904. - DOI - PMC - PubMed