T Cell Immunity and the Quest for Protective Vaccines against Staphylococcus aureus Infection
- PMID: 33291260
- PMCID: PMC7762175
- DOI: 10.3390/microorganisms8121936
T Cell Immunity and the Quest for Protective Vaccines against Staphylococcus aureus Infection
Abstract
Staphylococcus aureus is a wide-spread human pathogen, and one of the top causative agents of nosocomial infections. The prevalence of antibiotic-resistant S. aureus strains, which are associated with higher mortality and morbidity rates than antibiotic-susceptible strains, is increasing around the world. Vaccination would be an effective preventive measure against S. aureus infection, but to date, every vaccine developed has failed in clinical trials, despite inducing robust antibody responses. These results suggest that induction of humoral immunity does not suffice to confer protection against the infection. Evidence from studies in murine models and in patients with immune defects support a role of T cell-mediated immunity in protective responses against S. aureus. Here, we review the current understanding of the mechanisms underlying adaptive immunity to S. aureus infections and discuss these findings in light of the recent S. aureus vaccine trial failures. We make the case for the need to develop anti-S. aureus vaccines that can specifically elicit robust and durable protective memory T cell subsets.
Keywords: Staphylococcus aureus; T cell-mediated immunity; antibodies; tissue-resident memory T cells; vaccine.
Conflict of interest statement
The authors declare no conflict of interest.
Figures


Similar articles
-
Protection against Staphylococcus aureus Colonization and Infection by B- and T-Cell-Mediated Mechanisms.mBio. 2018 Oct 16;9(5):e01949-18. doi: 10.1128/mBio.01949-18. mBio. 2018. PMID: 30327437 Free PMC article.
-
MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-Staph) Vaccines Induce Sustained Protective Humoral and Cellular Immune Responses, with a Critical Role for Effector CD4 T Cells at Low Antibody Titers.Front Immunol. 2015 Sep 7;6:439. doi: 10.3389/fimmu.2015.00439. eCollection 2015. Front Immunol. 2015. PMID: 26441955 Free PMC article.
-
Antibiotic Treatment of Staphylococcus aureus Infection Inhibits the Development of Protective Immunity.Antimicrob Agents Chemother. 2022 Apr 19;66(4):e0227021. doi: 10.1128/aac.02270-21. Epub 2022 Mar 10. Antimicrob Agents Chemother. 2022. PMID: 35266822 Free PMC article.
-
Would hemodialysis patients benefit from a Staphylococcus aureus vaccine?Kidney Int. 2019 Mar;95(3):518-525. doi: 10.1016/j.kint.2018.10.023. Epub 2019 Jan 26. Kidney Int. 2019. PMID: 30691691 Review.
-
Targeting Skin-Resident Memory T Cells via Vaccination to Combat Staphylococcus aureus Infections.Trends Immunol. 2021 Jan;42(1):6-17. doi: 10.1016/j.it.2020.11.005. Epub 2020 Dec 9. Trends Immunol. 2021. PMID: 33309137 Review.
Cited by
-
Staphylococcus aureus adaptive evolution: Recent insights on how immune evasion, immunometabolic subversion and host genetics impact vaccine development.Front Cell Infect Microbiol. 2022 Dec 27;12:1060810. doi: 10.3389/fcimb.2022.1060810. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 36636720 Free PMC article. Review.
-
Toward an effective Staphylococcus vaccine: why have candidates failed and what is the next step?Expert Rev Vaccines. 2023 Jan-Dec;22(1):207-209. doi: 10.1080/14760584.2023.2179486. Expert Rev Vaccines. 2023. PMID: 36765453 Free PMC article. No abstract available.
-
Distinct T cell signatures are associated with Staphylococcus aureus skin infection in pediatric atopic dermatitis.JCI Insight. 2024 Apr 11;9(9):e178789. doi: 10.1172/jci.insight.178789. JCI Insight. 2024. PMID: 38716729 Free PMC article.
-
The Susceptibility Profiles of Human Peripheral Blood Cells to Staphylococcus aureus Cytotoxins.Microorganisms. 2025 Aug 4;13(8):1817. doi: 10.3390/microorganisms13081817. Microorganisms. 2025. PMID: 40871321 Free PMC article. Review.
-
Pathobiont-driven antibody sialylation through IL-10 undermines vaccination.J Clin Invest. 2024 Dec 16;134(24):e179563. doi: 10.1172/JCI179563. J Clin Invest. 2024. PMID: 39680460 Free PMC article.
References
-
- Anderson D.J., Sexton D.J., Kanafani Z.A., Auten G., Kaye K.S. Severe surgical site infection in community hospitals: Epidemiology, key procedures, and the changing prevalence of methicillin-resistant Staphylococcus aureus. Infect. Control. Hosp. Epidemiol. 2007;28:1047–1053. doi: 10.1086/520731. - DOI - PubMed
-
- Berríos-Torres S.I., Umscheid C.A., Bratzler D.W., Leas B., Stone E.C., Kelz R.R., Reinke C.E., Morgan S., Solomkin J.S., Mazuki J.E., et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection. JAMA Surg. 2017;152:784–791. doi: 10.1001/jamasurg.2017.0904. - DOI - PubMed
-
- Lee B.Y., Singh A., David M.Z., Bartsch S.M., Slayton R.B., Huang S.S., Zimmer S.M., Potter M.A., Macal C.M., Lauderdale D.S., et al. The economic burden of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) Clin. Microbiol. Infect. 2013;19:528–536. doi: 10.1111/j.1469-0691.2012.03914.x. - DOI - PMC - PubMed
-
- Acton D.S., Plat-Sinnige M.J., van Wamel W., de Groot N., van Belkum A. Intestinal carriage of Staphylococcus aureus: How does its frequency compare with that of nasal carriage and what is its clinical impact? Eur. J. Clin. Microbiol. Infect. Dis. 2009;28:115–127. doi: 10.1007/s10096-008-0602-7. - DOI - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources