Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 23;12(51):57207-57217.
doi: 10.1021/acsami.0c14704. Epub 2020 Dec 8.

Fully Inkjet-Printed Mesoporous SnO2-Based Ultrasensitive Gas Sensors for Trace Amount NO2 Detection

Affiliations

Fully Inkjet-Printed Mesoporous SnO2-Based Ultrasensitive Gas Sensors for Trace Amount NO2 Detection

Nehru Devabharathi et al. ACS Appl Mater Interfaces. .

Abstract

Printed sensors are among the most successful groups of devices within the domain of printed electronics, both in terms of their application versatility and the emerging market share. However, reports on fully printed gas sensors are rare in the literature, even though it can be an important development toward fully printed multisensor platforms for diagnostics, process control, and environmental safety-related applications. In this regard, here, we present the traditional tin oxide-based completely inkjet-printed co-continuous and mesoporous thin films with an extremely large surface-to-volume ratio and then investigate their NO2 sensing properties at low temperatures. A method known as evaporation-induced self-assembly (EISA) has been mimicked in this study using pluronic F127 (PEO106-PPO70-PEO106) as the soft templating agent and xylene as the micelle expander to obtain highly reproducible and spatially homogeneous co-continuous mesoporous crystalline SnO2 with an average pore diameter of the order of 15-20 nm. The fully printed SnO2 gas sensors thus produced show high linearity for NO2 detection, along with extremely high average response of 11,507 at 5 ppm NO2. On the other hand, the sensors show an ultralow detection limit of the order of 20 ppb with an easy to amplify response of 31. While the excellent electronic transport properties along such co-continuous, mesoporous structures are ensured by their well-connected (co-continuous) ligaments and pores (thereby ensuring high surface area and high mobility transport at the same time) and may actually be responsible for the outstanding sensor performance that has been observed, the use of an industrial printing technique ascertains the possibility of high-throughput manufacturing of such sensor units toward inexpensive and wide-range applications.

Keywords: NO2 sensor; co-continuous mesoporous structure; evaporation-induced self-assembly; inkjet printing; tin oxide.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources